Skip to main content
Log in

Effect of Exogenic Humic Substances on Various Growth Endpoints of Alternaria alternata and Trichoderma harzianum in the Experimental Conditions

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Industrial humic products (HPs) manufactured from various organic matter resources, including fossils, peat, lake-bottom sediments and organic waste materials, have found multiple applications in soil environments. Fungi play a crucial role in the turnover of humic substances (HSs). However, the data on the biological effects of HSs on soil fungi are contradictory. Revealing mechanisms of how HSs interact with soil filamentous fungi is essential for understanding a sustainable soil system. Here we study the responses of phytopathogenic Alternaria alternata and the potential antagonist Trichoderma harzianum, to exogenic HPs (from leonardite and lignosulfonate) at two concentrations (0.1 and 0.02%) in growth media with varying sucrose concentrations (0, 3 and 30 g/L). We assessed the fungal growth endpoints including the mycelium biomass accumulation, fungal colony size and conidia production. Our results demonstrate the significant relationships between the extent of inhibitory/stimulation effect of HPs on the investigated fungi and the carbon status of the growth medium, some features of the fungal species, as well as the type and concentration of the introduced HPs. The responses of plant pathogens correlated specifically with various types of HPs. HP from lignosulfonate exhibited a more stimulating effect on A. alternata compared to the effect of HP from leonardite.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stevenson, F.J.: Humus Chemistry. Genesis, Composition, Reactions, vol. 2. Wiley, New York (1994)

    Google Scholar 

  2. Bradley, P.M., Chapelle, F.H., Lovley, D.R.: Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene. Appl. Environ. Microb. 64, 3102–3105 (1998)

    Article  Google Scholar 

  3. Simpson, M.J., Chefetz, B., Hatcher, P.G.: Phenanthrene sorption to structurally modified humic acids. J Environ. Qual. 32, 1750–1758 (2003)

    Article  Google Scholar 

  4. Yakhin, O., Lubyanov, A.A., Yakhin, I.A., Brown, P.H.: Biostimulants in plant science: a global perspective. Front. Plant Sci. (2016). https://doi.org/10.3389/fpls.2016.02049

    Article  Google Scholar 

  5. Pukalchik, M., Kydralieva, K., Yakimenko, O., Fedoseeva, E., Terekhova, V.: Outlining the potential role of humic products in modifying biological properties of the soil—a review. Front. Environ. Sci. (2019). https://doi.org/10.3389/fenvs.2019.00080

    Article  Google Scholar 

  6. Abbott, L.K., Macdonald, L.M., Wong, M.T.F., Webb, M.J., Jenkins, S.N., Farrell, M.: Potential roles of biological amendments for profitable grain production—a review. Agric. Ecosyst. Environ. 256, 34–50 (2018)

    Article  Google Scholar 

  7. Calvo, P., Nelson, L., Kloepper, J.W.: Agricultural use of plant biostimulants. Plant Soil 383, 3–41 (2014)

    Article  Google Scholar 

  8. Rose, M.T., Patti, A.F., Little, K.R., Brown, A.L., Jackson, W.R., Cavagnaro, T.R.: A meta-analysis and review of plant-growth response to humic substances: practical implications for Agriculture. Adv. Agron 124, 37–89 (2014)

    Article  Google Scholar 

  9. Perminova, I.V., Hatfield, K., Hertkorn, N.: Use of humic substances to remediate polluted environments: from theory to practice. Nato Sci. Series 52, 506 (2005). https://doi.org/10.1007/1-4020-3252-

    Article  Google Scholar 

  10. Yakimenko, O.S., Terekhova, V.A.: Humic preparations and the assessment of their biological activity for certification purposes. Eurasian Soil Sci. 44, 1222–1230 (2011)

    Article  Google Scholar 

  11. Yakimenko, O., Khundzhua, D., Izosimov, A., Yuzhakov, V., Patsaeva, S.: Source indicator of commercial humic products: UV-Vis and fluorescence proxies. J Soils Sediments 16, 1–13 (2018)

    Google Scholar 

  12. Lamar, R.T., Olk, D.C., Mayhew, L., Bloom, P.R.: A new standardized method for quantification of humic and fulvic acids in humic ores and commercial products. J. AOAC Int. 97, 721–730 (2014)

    Article  Google Scholar 

  13. Terekhova, V.A.: Micromycetes in ecological evaluation of aquatic and terrestrial ecosystems. Nauka, Moscow (2007)

    Google Scholar 

  14. Blondeau, R.: Biodegradation of natural and synthetic humic acids by the white rot fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 55, 1282–1285 (1989)

    Article  Google Scholar 

  15. Moliszewska, E., Pisarek, I.: Influence of humic substances on the growth of two phytopathogenic soil fungi. Environ. Int. 22(5), 579–584 (1996)

    Article  Google Scholar 

  16. Kirschner Jr., R.A., Parker, B.C., Falkinham, J.O.I.I.I.: Humic and fulvic acids stimulate the growth of Mycobacterium avium. FEMS Microbiol. Ecol 30, 327–332 (1999)

    Article  Google Scholar 

  17. Kulikova, N.A., Stepanova, E.V., Koroleva, O.V.: Mitigating activity of humic substances: direct influence on biota, In: Use of humic substances to remediate polluted environments: From theory to practice, Vol. 52 of NATO Science Series IV: Earth and Environmental Sciences, Netherlands, pp 285–309 (2005)

  18. Tikhonov, V.V., Yakushev, A.V., Zavgorodnyaya, Y.A., Byzov, B.A., Demin, V.V.: Effects of humic acids on the growth of bacteria. Eurasian Soil Sci. 43, 305–313 (2010)

    Article  Google Scholar 

  19. Pascual, J.A., Garcia, C., Hernandez, T., Lerma, S., Lynch, J.M.: Effectiveness of municipal waste compost and its humic fraction in suppressing Pythium ultimum. Microbial. Ecol. 44, 59–68 (2002)

    Article  Google Scholar 

  20. Gryndler, M., Hršelová, H., Sudová, R., Gryndlerová, H., Řezáčová, V., Merhautová, V.: Hyphal growth and mycorrhiza formation by the arbuscular mycorrhizal fungus Glomus claroideum BEG 23 is stimulated by humic substances. Mycorrhiza 15(7), 483–488 (2005)

    Article  Google Scholar 

  21. Loffredo, E., Berloco, M., Casulli, F., Senesi, N.: In vitro assessment of the inhibition of humic substances on the growth of two strains of Fusarium oxysporum. Biol. Fertil. Soils. 43, 759–769 (2007)

    Article  Google Scholar 

  22. Loffredo, E., Berloco, M., Senesi, N.: The role of humic fractions from soil and compost in controlling the growth in vitro of phytopathogenic and antagonistic soil-borne fungi. Ecotoxicol. Environ. Saf. 69, 350–357 (2008)

    Article  Google Scholar 

  23. Loffredo, E., Senesi, N.: In vitro and in vivo assessment of the potential of compost and its humic acid fraction to protect ornamental plants from soil-borne pathogenic fungi. Sci. Hortic. 122, 432–439 (2009)

    Article  Google Scholar 

  24. Martin, A.M., Chintalapati, S.P., Patel, T.R.: Extraction of bitumens and humic substances from peat and their effects on the growth of an acid-tolerant fungus. Soil Biol. Biochem. 22(7), 949–954 (1990)

    Article  Google Scholar 

  25. Zhang, W., Dick, W.A., Hoitink, H.A.J.: Compost induced systemic acquired resistance in cucumber to Pythium root rot and anthracnose. Phytopathology 83, 1066–1070 (1996)

    Article  Google Scholar 

  26. Lindahl, B.D., Ihrmark, K., Boberg, J., Trumbore, S.E., Hogberg, P., Stenlid, J., Finlay, R.D.: Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol. 173, 611–620 (2007)

    Article  Google Scholar 

  27. Grinhut, T., Hadar, Y., Chen, Y.: Degradation and transformation of humic substances by saprotrophic fungi: processes and mechanisms. Fungal Biol. Rev. 21, 179–189 (2007)

    Article  Google Scholar 

  28. Zavarzina, A.G., Lisov, A.A., Zavarzin, A.A., Leontievsky, A.A.: Fungal oxidoreductases and humification in forest soils. In: Shukla, G., Varma, A. (eds.) Soil Enzymology, Vol. 22 of Soil Biology, pp. 207–229. Springer, Berlin (2011)

    Google Scholar 

  29. Gramss, G., Ziegenhagen, D., Sorge, S.: Degradation of soil humic extract by wood- and soil-associated fungi, bacteria, and commercial enzymes. Microbiol. Ecol. 37, 140–151 (1999)

    Article  Google Scholar 

  30. Snajdr, J., Steffen, K.T., Hofrichter, M., Baldrian, P.: Transformation of 14C-labelled lignin and humic substances in forest soil by the saprobic basidiomycetes Gymnopus erythropus and Hypholoma fasciculare. Soil Biol. Biochem. 42, 1541–1548 (2010)

    Article  Google Scholar 

  31. Silva-Stenico, M.E., Vengadajellum, C.J., Janjua, H.A., Harrison, S.T.L., Burton, S.G., Cowan, D.A.: Degradation of low-rank coal by Trichoderma atroviride ES11. J Ind Microbiol. Biotechnol. 34, 625–631 (2007)

    Article  Google Scholar 

  32. Rezacova, V., Hrselova, H., Gryndlerova, H., Miksik, I., Gryndler, M.: Modifications of degradation-resistant soil organic matter by soil saprobic microfungi. Soil Biol. Biochem. 38, 2292–2299 (2006)

    Article  Google Scholar 

  33. Fedoseeva, E., Stepanov, A., Yakimenko, O., Patsaeva, S., Freidkin, M., Khundzhua, D., Terekhova, V.: Biodegradation of humic substances by microscopic filamentous fungi: chromatographic and spectroscopic proxies. J Soils Sediments 19(6), 2676–2687 (2019)

    Article  Google Scholar 

  34. Valmaseda, M., Martinez, A.T.: Contribution by pigmented fungi to p-type humic acid formation in two forest soils. Soil Biol. Biochem. 1(1), 23–28 (1989)

    Article  Google Scholar 

  35. Rojo, F.G., Reynoso, M.M., Sofia, M.F., Chulze, N., Torres, A.M.: Biological control by Trichoderma species of Fusarium solani causing peanut brown root rot under field conditions. Crop Prot. 26, 549–555 (2007)

    Article  Google Scholar 

  36. Polyanskaya, L.M., Kochkina, G.N., Koschevin, D.G., Zvyagintsev, D.G.: Kinetic description of the structure of complexes of soil actinomycetes. Microbiology 57(5), 854–859 (1989)

    Google Scholar 

  37. Sanin, S.S., Neklesova, N.P., Sanina, A.A., Pacholkova, E.V.: Methodical recommendations on creation of infectious backgrounds for immunogenetic studies of wheat. Russian Research Institute of Phytopathology, Moscow, Russia (2008)

    Google Scholar 

  38. Fedoseeva, E., Khundzhua, D., Terekhova, V., Patsaeva, S.: Use of absorption spectra and their second-order derivative to quantify degradation of lignohumate by filamentous fungi. Proc. SPIE 106142B, 1–7 (2018). https://doi.org/10.1117/12.2303617

    Article  Google Scholar 

  39. Khundzhua, D.A., Patsaeva, S.V., Terekhova, V.A., Yuzhakov, V.I.: Spectral characterization of fungal metabolites in aqueous medium with humus substances. J. Spectrosc. (2013). https://doi.org/10.1155/2013/538608

    Article  Google Scholar 

  40. Marfenina, O.E.: Anthropogenic ecology of soil fungi. Medicine for all. Moscow, Russia p. 195 (2005)

  41. Marfenina, O.E., Fomicheva, G.M., Vasilenko, O.V., Naumova, E.M., Kul’ko, A.B.: Sporulation in saprotrophic and clinical strains of Aspergillus sydowii (Bain. & Sart.) Thom & Church under various environmental conditions. Microbiology 79(6), 753–758 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by the Russian Foundation of Basic Research No. 18-04-01218.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena V. Fedoseeva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedoseeva, E.V., Patsaeva, S.V., Khundzhua, D.A. et al. Effect of Exogenic Humic Substances on Various Growth Endpoints of Alternaria alternata and Trichoderma harzianum in the Experimental Conditions. Waste Biomass Valor 12, 211–222 (2021). https://doi.org/10.1007/s12649-020-00974-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-00974-x

Keywords

Navigation