Skip to main content

Advertisement

Log in

Power to Gas Systems Integrated with Anaerobic Digesters and Gasification Systems

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The power to gas process chain could play a significant role in the future energy system. Renewable electric energy can be transformed into storable methane via electrolysis and methanation. In the process, three water electrolysis technologies can be considered: alkaline, PEM and solid oxide. Alkaline electrolysis is currently the cheapest technology; however, in the future PEM electrolysis could be better suited for process chain. Solid oxide electrolysis could also be an option in the future, especially if heat sources are available. The methanation reaction can be catalytic, biological or bio-electrochemical, with respective advantages and disadvantages. Different sources of carbon dioxide can be used as biogas and syngas. Different process schemes are present in the literature about the integration of biogas and syngas plants with power to gas systems,  also with the aim to improve the overall energy efficiency.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37

Similar content being viewed by others

References

  1. Federal Environmental Agency (FEA). Energieziel 2050: 100% Strom aus erneuerbaren Quellen. http://www.uba.de/uba-info-medien/3997.html (2010). Accessed 15 Mar 2012

  2. Stothert, W.: Renewable Energies with Energy Storage. Xlibris Corporation, Bloomington (2011)

    Google Scholar 

  3. Breyer, C.H., Rieke, S., Sterner, M., Schmid, J.: Hybrid PV-wind renewable methane power plants. In: European Photovoltaic Solar Energy Conference, Hamburg, Germany. http://www.q-cells.com/uploads/tx_abdownloads/files/6CV.1.31_Breyer2011_HybPV-Wind-RPM-Plants_paper_PVSEC_preprint.pdf (2011). Accessed 27 Aug 2012

  4. Muller, B., Muller, K., Teichmann, D., Arlt, W.: Energiespeicherung mittels Methan und energietragenden Stoffen e ein thermodynamischer Vergleich. Chem. Ingenieur Technik 83, 2002–2013 (2011). https://doi.org/10.1002/cite.201100113

    Article  Google Scholar 

  5. Andersson, M.P., Abild-Pedersen, F., Remediakis, I.N., Bligaard, T., Jones, G., Engbæk, J., Lytken, O., Horch, S., Nielsen, J.H., Sehested, J., Rostrup-Nielsen, J.R., NØrskov, J.K., Chorkendorff, I.: Structure sensitivity of the methanation reaction: H2 induced CO dissociation on nickel surfaces. J. Catal. 255, 6–19 (2008)

    Google Scholar 

  6. Du, G., Lim, S., Yang, Y., Wang, C., Pfefferle, L., Haller, G.L.: Methanation of carbon dioxide on Ni-incorporated MCM-41 catalysts: the influence of catalyst pretreatment and study of steady-state reaction. J. Catal. 249, 370–379 (2007)

    Google Scholar 

  7. Ma, S., Tan, Y., Han, Y.: Methanation of syngas over coral reef-like Ni/Al2O3 catalysts. J. Nat. Gas Chem. 20, 435–440 (2011)

    Google Scholar 

  8. Zhao, A., Ying, W., Zhang, H., Ma, H., Fang, D.: Catal. Commun. 17, 34 (2012)

    Google Scholar 

  9. IEA: Technology Roadmap: Hydrogen and Fuel Cells. OECD/IEA, Paris (2015)

    Google Scholar 

  10. Lehner, M., Tichler, R., Steinmüller, H., Koppe, M.: Power-to-Gas: Technology and business Models, vol. 39. Springer, New York (2014)

    Google Scholar 

  11. Schiebahn, S., Grube, T., Robinius, M., Zhao, L., Otto, A., Kumar, B., Weber, M., Stolten, D.: Power to gas. In: Stolten, D., Scherer, V. (eds.) Transition to Renewable Energy Systems. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2013)

    Google Scholar 

  12. Schiebahn, S., Grube, T., Robinius, M., Tietze, V., Kumar, B., Stolten, D.: Power to gas: technological overview, systems analysis and economic assessment for a case study in Germany. Int. J. Hydrogen Energy 40(12), 4285–4294 (2015)

    Google Scholar 

  13. Gahleitner, G.: Hydrogen from renewable electricity: an international review of power-to-gas pilot plants for stationary applications. Int. J. Hydrogen Energy 38(5), 2039–2061 (2013)

    Google Scholar 

  14. Zhu, H., Kee, R.J., Janardhanan, V.M., Deutschmann, O., Goodwin, D.G.: Modeling elementary heterogeneous chemistry and electrochemistry in solid-oxide fuel cells. J. Electrochem. Soc. 152(12), A2427–A2440 (2005)

    Google Scholar 

  15. Ebbesen, S.D., Graves, C., Mogensen, M.: Production of synthetic fuels by co-electrolysis of steam and carbon dioxide. Int. J. Green Energy 6(6), 646–660 (2009)

    Google Scholar 

  16. Ebbesen, S.D., Knibbe, R., Mogensen, M.: Co-electrolysis of steam and carbon dioxide in solid oxide cells. J. Electrochem. Soc. 159(8), F482–F489 (2012)

    Google Scholar 

  17. Fu, Q., Mabilat, C., Zahid, M., Brisse, A., Gautier, L.: Syngas production via high-temperature steam/CO2 coelectrolysis: an economic assessment. Energy Environ. Sci. 3(10), 1382–1397 (2010)

    Google Scholar 

  18. Graves, C., Ebbesen, S.D., Mogensen, M., Lackner, K.S.: Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy. Renew. Sust. Energy Rev. 15, 1–23 (2011)

    Google Scholar 

  19. Zhan, Z., Kobsiriphat, W., Wilson, J.R., Pillai, M., Kim, I., Barnett, S.A.: Syngas production by coelectrolysis of CO2/H2O: the basis for a renewable energy cycle. Energy Fuels 23(6), 3089–3096 (2009)

    Google Scholar 

  20. Wendel, C.H., Kazempoor, P., Braun, R.J.: Novel electrical energy storage system based on reversible solid oxide cells: system design and operating conditions. J. Power Sources 276, 133–144 (2015)

    Google Scholar 

  21. Jensen, S.H., Graves, C., Mogensen, M., Wendel, C., Braun, R., Hughes, G., Gao, Z., Barnett, S.A.: Large-scale electricity storage utilizing reversible solid oxide cells combined with underground storage of CO2 and CH4. Energy Environ. Sci. 8(8), 2471–2479 (2015)

    Google Scholar 

  22. Zoulias, E., Varkaraki, E., Lymberopoulos, N., Christodoulou, C.N., Karagiorgis, G.N.: A review on water electrolysis. TCJST 4(2), 41–71 (2004)

    Google Scholar 

  23. Mergel, J., Carmo, M., Fritz, D.: Status on technologies for hydrogen production by water electrolysis. In: Stolten, D., Scherer, V. (eds.) Transition to Renewable Energy Systems. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim (2013)

    Google Scholar 

  24. Bi, L., Boulfrad, S., Traversa, E.: Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides. Chem. Soc. Rev. 43(24), 8255–8270 (2014)

    Google Scholar 

  25. Hussain, M.M., Li, X., Dincer, I.: A general electrolyte–electrode-assembly model for the performance characteristics of planar anode-supported solid oxide fuel cells. J. Power Sources 189(2), 916–928 (2009)

    Google Scholar 

  26. O’Brien JE, Zhang X, Housley GK, DeWall K, Moore-McAteer L, and Tao G.: High temperature electrolysis pressurized experiment design, operation, and results. Report for US Department of Energy Office of Nuclear Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517 (2012)

  27. Jensen, S.H., Larsen, P.H., Mogensen, M.: Hydrogen and synthetic fuel production from renewable energy sources. Int. J. Hydrogen Energy 32(15), 3253–3257 (2007)

    Google Scholar 

  28. Mougin, J., Chatroux, A., Couturier, K., Petitjean, M., Reytier, M., Gousseau, G., Lefebvre-Joud, F.: High temperature steam electrolysis stack with enhanced performance and durability. Energy Procedia 29, 445–454 (2012)

    Google Scholar 

  29. Mathiesen, B.V., Skov, I.R., Connolly, D., Nielsen, M.P., Hendriksen, V., Mogensen, M., Hojgaard, J.S., Dalgaard, E.S.: Technology data for high temperature solid oxide electrolyser cells, alkali and PEM electrolysers. Department of Development and Planning, Aalborg University. http://vbn.aau.dk/files/80222058/Technology_data_for_SOEC_alkali_and_PEM_electrolysers.pdf (2013)

  30. Minh, N.Q., Mogensen, M.B.: Reversible solid oxide fuel cell technology for green fuel and power production. Electrochem. Soc. Interface 22, 55–62 (2013)

    Google Scholar 

  31. Mougin J.: Hydrogen production by High-temperature steam electrolysis. In: Compendium of Hydrogen Energy: Hydrogen Production and Purification, 1 edn., p. 225. Elsevier (2015)

  32. Giglio, E., Lanzini, A., Santarelli, M., Leone, P.: Synthetic natural gas via integrated high-temperature electrolysis and methanation: Part II—Economic analysis. J. Energy Storage 2, 64–79 (2015)

    Google Scholar 

  33. Graves, C., Ebbesen, S.D., Jensen, S.H., Simonsen, S.B., Mogensen, M.B.: Eliminating degradation in solid oxide electrochemical cells by reversible operation. Nat. Mater. 14(2), 239–244 (2015)

    Google Scholar 

  34. Grond, L., Schulze, P., Holstein, J.: Systems Analyses Power to Gas: A Technology Review. DNV KEMA Energy & Sustainability, Groningen. https://www.scribd.com/document/328966622/DNV-KEMA-Systems-Analyses-Power-to-Gas-a-Technology-Review (2013)

  35. Park, D.H., et al.: Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl. Environ. Microbiol. 65, 2912–2917 (1999)

    Google Scholar 

  36. Call, D., Logan, B.E.: Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environ. Sci. Technol. 42, 3401–3406 (2008)

    Google Scholar 

  37. Jeremiasse, A.W., et al.: Microbial electrolysis cell with a microbial biocathode. Bio-electrochemistry 78, 39–43 (2010)

    Google Scholar 

  38. Tartakovsky, B., et al.: Biocatalyzed hydrogen production in a continuous flow microbial fuel cell with a gas phase cathode. J. Power Sources 182, 291–297 (2008)

    Google Scholar 

  39. Wang, A., et al.: Source of methane and methods to control its formation in single chamber microbial electrolysis cells. Int. J. Hydrogen Energy 34, 3653–3658 (2009)

    Google Scholar 

  40. Clauwaert, P., et al.: Combining bio-catalyzed electrolysis with anaerobic digestion. Water Sci. Technol. 57, 575–579 (2008)

    Google Scholar 

  41. Clauwaert, P., et al.: Minimizing losses in bio-electrochemical systems: the road to applications. Appl. Microbiol. Biotechnol. 79, 901–913 (2008)

    Google Scholar 

  42. Clauwaert, P., Verstraete, W.: Methanogenesis in membraneless microbial electrolysis cells. Appl. Microbiol. Biotechnol. 82, 829–836 (2009)

    Google Scholar 

  43. Cheng, S., et al.: Direct biological conversion of electrical current into methane by electromethanogenesis. Environ. Sci. Technol. 43, 3953–3958 (2009)

    Google Scholar 

  44. Deutzmann, J.S., et al.: Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis. mBio 6, e00496 (2015)

    Google Scholar 

  45. Yates, M.D., et al.: Hydrogen evolution catalyzed by viable and non-viable cells on biocathodes. Int. J. Hydrogen Energy 39, 16841–16851 (2014)

    Google Scholar 

  46. Villano, M., et al.: Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresour. Technol. 101, 3085–3090 (2010)

    Google Scholar 

  47. Lohner, S.T., et al.: Hydrogenase-independent uptake and metabolism of electrons by the archaeon Methanococcus maripaludis. ISME J. 8, 1673–1681 (2014)

    Google Scholar 

  48. Logan, B.E., Rabaey, K.: Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337, 686–690 (2012)

    Google Scholar 

  49. Logan, B.E., et al.: Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 40, 5181–5192 (2006)

    Google Scholar 

  50. Marshall, C.W., et al.: Electrosynthesis of commodity chemicals by an autotrophic microbial community. Appl. Environ. Microbiol. 78, 8412–8420 (2012)

    Google Scholar 

  51. Rader, G.K., Logan, B.E.: Multi-electrode continuous flow microbial electrolysis cell for biogas production from acetate. Int. J. Hydrogen Energy 35, 8848–8854 (2010)

    Google Scholar 

  52. van Eerten-Jansen, M.C.A.A., et al.: Microbial electrolysis cells for production of methane from CO2: long-term performance and perspectives. Int. J. Energy Res. 36, 809–819 (2012)

    Google Scholar 

  53. Villano, M., et al.: Carbon and nitrogen removal and enhanced methane production in a microbial electrolysis cell. Bioresour. Technol. 130, 366–371 (2013)

    Google Scholar 

  54. Jiang, Y., et al.: Bio-electrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate. Int. J. Hydrogen Energy 38, 3497–3502 (2013)

    Google Scholar 

  55. van Eerten-Jansen, M.C.A.A., et al.: Microbial community analysis of a methane-producing biocathode in a bioelectrochemical system. Archaea 2013, 1–12 (2013)

    Google Scholar 

  56. Siegert, M., et al.: Methanobacterium dominates biocathodic archaeal communities in methanogenic microbial electrolysis cells. ACS Sustain. Chem. Eng. 3, 1668–1676 (2015)

    Google Scholar 

  57. Jang, H.M., Cho, H.U., Park, S.K., Ha, J.H., Park, J.M.: Influence of thermophilic aerobic digestion as a sludge pre-treatment and solids retention time of mesophilic anaerobic digestion on the methane production, sludge digestion and microbial communities in a sequential digestion process. Water Res. 48, 1–14 (2014)

    Google Scholar 

  58. van Lier, J.B., et al.: Celebrating 40 years anaerobic sludge bed reactors for industrial wastewater treatment. Rev. Environ. Sci. Bio/Technol. 14, 681–702 (2015)

    Google Scholar 

  59. Götz, M., Lefebvre, J., Mörs, F., Koch, A.M., Graf, F., Bajohr, S., Reimert, R., Kolb, T.: Renewable power-to-gas: a technological and economic review. Renew. Energy 85, 1371–1390 (2016)

    Google Scholar 

  60. Jentsch, M., Trost, T., Sterner, M.: Optimal use of power-to-gas energy storage systems in an 85% renewable energy scenario. Energy Procedia 46, 254–261 (2014)

    Google Scholar 

  61. Kötter, E., Schneider, L., Sehnke, F., Ohnmeiss, K., Schröer, R.: The future electric power system: impact of power to-gas by interacting with other renewable energy components. J. Energy Storage 5, 113–119 (2016)

    Google Scholar 

  62. Trost, T., Horn, S., Jentsch, M., Sterner, M.: Erneuerbares methan: analyse der CO2-potenziale für power-to-gas anlagen in Deutschland. Zeitschrift für Energiewirtschaft 36(3), 173–190 (2012)

    Google Scholar 

  63. Tsupari, E., Kärki, J., Vakkilainen, E.: Economic feasibility of power-to-gas integrated with biomass fired CHP plant. J. Energy Storage 5, 62–69 (2016)

    Google Scholar 

  64. Varone, A., Ferrari, M.: Power to liquid and power to gas: an option for the German Energiewende. Renew. Sustain. Energy Rev. 45, 207–218 (2015)

    Google Scholar 

  65. Winkler-Goldstein, R., Rastetter, A.: Power to gas: the final breakthrough for the hydrogen economy? Green 3(1), 69–78 (2013)

    Google Scholar 

  66. Steinmüller, H.R., Tichler, A., Reiter, G.: Power-to-Gas–eine Systemanalyse. Markt-und Technologiescouting und–analyse. Energieinstitut an der Johannes Kepler Universität Linz, TU Wien, MU Leoben, JKU Linz (2014)

  67. Stolten, D., Emonts, B., Grube, T.: Hydrogen as an Enabler for Renewable Energies. In: Stolten, D., Scherer, V. (eds.) Transition to Renewable Energy Systems, pp. 195–215. Wiley-WCH, Weinheim (2013)

    Google Scholar 

  68. de Joode, J., Daniëls, B., Smekens, K., van Stralen, J., Dalla Longa, F., Schoots, K., Holstein, J.: Exploring the role for power-to-gas in the future Dutch energy system. ECN and DNV GL, Petten (2014)

    Google Scholar 

  69. Heinisch, V.: Effects of power-to-gas on power systems: a case study of Denmark. In: Power Tech, IEEE Eindhoven, pp. 1–6 (2015)

  70. Sørensen, B., Petersen, A.H., Juhl, C., Ravn, H., Søndergren, C., Simonsen, P., Schleisner, L.: Hydrogen as an energy carrier: scenarios for future use of hydrogen in the Danish energy system. Int. J. Hydrogen Energy 29(1), 23–32 (2004)

    Google Scholar 

  71. Karellas, S., Boukis, I., Kontopoulos, G.: Development of an investment decision tool for biogas production from agricultural waste. Renew. Sustain. Energy Rev. 14(4), 1273–1282 (2010)

    Google Scholar 

  72. Karakashev, D., Batstone, D.J., Angelidaki, I.: Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors. Appl. Environ. Microbiol. 71(1), 331–338 (2005)

    Google Scholar 

  73. Lebuhn, M., Munk, B., Effenberger, M.: Agricultural biogas production in Germany-from practice to microbiology basics. Energy Sustain. Soc. 4(1), 10 (2014)

    Google Scholar 

  74. Schink, B., Stams, A.J.: Syntrophism Among Prokaryotes. Springer, New York (2006)

    Google Scholar 

  75. Hattori, S.: Syntrophic acetate-oxidizing microbes in methanogenic environments. Microbes Environ. 23(2), 118–127 (2008)

    Google Scholar 

  76. Kumar, P., Barrett, D.M., Delwiche, M.J., Stroeve, P.: Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 48(8), 3713–3729 (2009)

    Google Scholar 

  77. Ziganshin, A., Schmidt, T., Scholwin, F., Il’inskaya, O., Harms, H., Kleinsteuber, S.: Bacteria and archaea involved in anaerobic digestion of distillers grains with solubles. Appl. Microbiol. Biotechnol. 89(6), 2039–2052 (2011)

    Google Scholar 

  78. Dolfing, J., Jiang, B., Henstra, A.M., Stams, A.J., Plugge, C.M.: Syntrophic growth on formate: a new microbial niche in anoxic environments. Appl. Environ. Microbiol. 74(19), 6126–6131 (2008)

    Google Scholar 

  79. Liu, Y., Whitman, W.B.: Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann. N. Y. Acad. Sci. 1125(1), 171–189 (2008)

    Google Scholar 

  80. Batstone, D.J., Kelle, J., Steyer, J.: A review of ADM1 extensions, applications, and analysis: 2002–2005. Water Sci. Technol. 54(4), 1–10 (2006)

    Google Scholar 

  81. Goberna, M., Insam, H., Franke-Whittle, I.: Effect of biowaste sludge maturation on the diversity of thermophilic bacteria and archaea in an anaerobic reactor. Appl. Environ. Microbiol. 75(8), 2566–2572 (2009)

    Google Scholar 

  82. Hori, T., Haruta, S., Ueno, Y., Ishii, M., Igarashi, Y.: Dynamic transition of a methanogenic population in response to the concentration of volatile fatty acids in a thermophilic anaerobic digester. Appl. Environ. Microbiol. 72(2), 1623–1630 (2006)

    Google Scholar 

  83. Karakashev, D., Batstone, D.J., Trably, E., Angelidaki, I.: Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of Methanosaetaceae. Appl. Environ. Microbiol. 72(7), 5138–5141 (2006)

    Google Scholar 

  84. Krakat, N., Westphal, A., Schmidt, S., Scherer, P.: Anaerobic digestion of renewable biomass: thermophilic temperature governs methanogen population dynamics. Appl. Environ. Microbiol. 76(6), 1842–1850 (2010)

    Google Scholar 

  85. Ryan, P., Forbes, C., McHugh, S., O’Reilly, C., Fleming, G., Colleran, E.: Enrichment of acetogenic bacteria in high rate anaerobic reactors under mesophilic and thermophilic conditions. Water Res. 44(14), 4261–4269 (2010)

    Google Scholar 

  86. Sasaki, D., Hori, T., Haruta, S., Ueno, Y., Ishii, M., Igarashi, Y.: Methanogenic pathway and community structure in a thermophilic anaerobic digestion process of organic solid waste. J. Biosci. Bioeng. 111(1), 41–46 (2011)

    Google Scholar 

  87. Sun, L., Müller, B., Westerholm, M., Schnürer, A.: Syntrophic acetate oxidation in industrial CSTR biogas digesters. J. Biotechnol. 171, 39–44 (2014)

    Google Scholar 

  88. Siriwongrungson, V., Zeng, R.J., Angelidaki, I.: Homoacetogenesis as the alternative pathway for H < sub > 2 </sub > sink during thermophilic anaerobic degradation of butyrate under suppressed methanogenesis. Water Res. 41(18), 4204–4210 (2007)

    Google Scholar 

  89. Chen, A.C., Ohashi, A., Harada, H.: Acetate synthesis from H2/CO2 in simulated and actual landfill samples. Environ. Technol. 24(4), 435–443 (2003)

    Google Scholar 

  90. Angelidaki, I., Ellegaard, L.: Anaerobic digestion in Denmark: Past, present and future. In: Anaerobic digestion for sustainability in waste (water) treatment and reuse. In: Proceedings of 7th FAO/SREN-Workshop, 19–22 May 2002, Moscow, Russia, pp. 129–138 (2002)

  91. Kashyap, D.R., Dadhich, K.S., Sharma, S.K.: Biomethanation under psychrophilic conditions: a review. Bioresour. Technol. 87, 147–153 (2003)

    Google Scholar 

  92. Smith, S.R., Lang, N.L., Cheung, K.H.M., Spanoudaki, K.: Factors controlling pathogen destruction during anaerobic digestion of biowastes. Waste Manag. 25(4), 417–425 (2005)

    Google Scholar 

  93. Nielsen, H.B.: Control parameters for understanding and preventing process imbalances in biogas plants: Emphasis on VFA dynamics. Ph.D. dissertation, BioCentrum-DTU, Technical University of Denmark (2006)

  94. Hwang, M.H., Jang, N.J., Hyum, S.H., Kim, I.S.: Anaerobic bio-hydrogen production from ethanol fermentation: the role of pH. J. Biotechnol. 111(3), 297–309 (2004)

    Google Scholar 

  95. Horiuchi, J., Shimizu, T., Tada, K., Kanno, T., Kobayashi, M.: Selective production of organic acids in anaerobic acid reactor by pH control. Bioresour. Technol. 82(3), 209–213 (2003)

    Google Scholar 

  96. Pind, P.F., Angelidaki, I., Ahring, B.K., Stamatelatou, K., Lyberatos, G.: Monitoring and control of anaerobic reactors. In: Ahring, B.K. (ed.) Biomethanation II, pp. 135–182. Springer, Berlin (2003)

    Google Scholar 

  97. McMahon, K.D., Stroot, P.G., Mackie, R.I., Raskin, L.: Anaerobic codigestion of municipal solid waste and biosolids under various mixing conditioins- II: microbial population dynamics. Water Res. 35(7), 1817–1827 (2001)

    Google Scholar 

  98. Stroot, P.G., McMahon, K.D., Mackie, R.I., Raskin, L.: Anaerobic codigestion of municipal solid waste and biosolids under various mixing conditions—I. digester performance. Water Res. 35(7), 1804–1816 (2001)

    Google Scholar 

  99. Vavilin, V.A., Angelidaki, I.: Anaerobic degradation of solid material: importance of initiation centers for methanogenesis, mixing intensity, and 2D distributed model. Biotechnol. Bioeng. 89, 113–122 (2005)

    Google Scholar 

  100. Emerson, K., Russo, R.C., Lund, R.E., Thurston, R.V.: Aqueous ammonia equilibrium calculations: effect of pH and temperature. J. Fish. Res. Board Can. 32(12), 2379–2383 (1975)

    Google Scholar 

  101. Sung, S., Liu, T.: Ammonia inhibition on thermophilic aceticlastic methanogens. Water Sci. Technol. 45(10), 113–120 (2002)

    Google Scholar 

  102. Stams, A.J.M., Plugge, C.M., De Bok, A.F.M., Van Houten, B.H.G.W., Lens, P., Dijkman, H., Weijma, J.: Metabolic interactions in methanogenic and sulfate-reducing bioreactors. Water Sci. Technol. 52(1), 13–20 (2005)

    Google Scholar 

  103. Khanal, S.K., Huang, J.C.: Effect of high influent sulfate on anaerobic wastewater treatment. Water Environ. Res. 77(7), 3037–3046 (2005)

    Google Scholar 

  104. Yamaguchi, T., Harada, H., Hisano, T., Yamazaki, S., Tseng, I.C.: Process behavior of UASB reactor treating a wastewater containing high strength sulfate. Water Res. 33(14), 3182–3190 (1999)

    Google Scholar 

  105. Templer, J., Lalman, J.A., Jing, N., Ndegwa, P.M.: Influence of C18 long chain fatty acids on hydrogen metabolism. Biotechnol. Prog. 22(1), 199–207 (2006)

    Google Scholar 

  106. Angelidaki, I., Ellegaard, L., Ahring, B.K.: Applications of the anaerobic digestion process. In: Ahring, B.K. (ed.) Bio-methanation II, pp. 1–33. Springer, Berlin (2003)

    Google Scholar 

  107. Codina, J.C., Munoz, M.A., Cazorla, F.M., Perez-Gracia, A., Morinigo, M.A., De Vicente, A.: The inhibition of methanogenic activity from anaerobic domestic sludges as a simple toxicity bioassay. Water Res. 32(4), 1338–1342 (1998)

    Google Scholar 

  108. Lettinga, G., Rebac, S., Parshina, S., Nozhevnikova, A., Van Lier, J., Stams, A.J.M.: High-rate anaerobic treatment of wastewater at low temperatures. Appl. Environ. Microbiol. 65(4), 1696–1702 (1999)

    Google Scholar 

  109. Lepistö, R., Rintala, J.: The effect of extreme temperatures (70–80 C) on the effluent quality and sludge characteristics of UASB reactors. Water Sci. Technol. 36(6–7), 325–332 (1997)

    Google Scholar 

  110. Basu, P.: Biomass Gasification and Pyrolysis. Elsevier Inc., Amsterdam (2010)

    Google Scholar 

  111. Knoef, H.A.M.: Handbook Biomass Gasification. BTG Biomass Technology Group, Enschede (2005)

    Google Scholar 

  112. Boerrigter, H., Rauch, R.: Syngas production and utilization. In: Knoef, HAM. (ed.) Handbook Biomass Gasification, pp. 211–230 (2005)

  113. Higman, C., Burgt, M.V.D.: Gasification, 2nd edn. Elsevier, Amsterdam (2008)

    Google Scholar 

  114. Iversen, H.L., Gobel, B.: Update on gas cleaning technologies. In: Knoef, HAM (ed.) Handbook Biomass Gasification, pp. 189–210 (2005)

  115. Reiter, G., Lindorfer, J.: Evaluating CO2 sources for power-to-gas applications—A case study for Austria. Int. J. CO2 Util. 10, 40–49 (2015)

    Google Scholar 

  116. Zoss, T., Karklina, I., Blumberga, D.: Power to gas and pumped hydro storage potential in Latvia. Energy Procedia 95(528–535), 2016 (2016)

    Google Scholar 

  117. Mohseni, F., et al.: Biogas from renewable electricity—increasing a climate neutral fuel supply. Appl. Energy 90(1), 11–16 (2012)

    Google Scholar 

  118. Brooks, K.P., Hua, J., Zhub, H., Keeb, R.J.: Methanation of carbon dioxide by hydrogen reduction using the Sabatier process in microchannel reactors. Chem. Eng. Sci. 62, 1161–1170 (2007)

    Google Scholar 

  119. Görling, M., Westermark, M.: Increased Power Generation by Humidification of Gasification Agent in Biofuel Production. World renewable energy congress XI, Abu Dhabi (2010)

    Google Scholar 

  120. Foscolo, P.U., Gallucci, K., Micheli, F.: Studio della valorizzazione dell’impianto di gassificazione di biomasse a letto fluidizzato internamente ricircolante per la produzione di metano. Parte A: Studio di configurazioni impiantistiche e variabili processuali per massimizzare la resa di metano, Report Enea Rds 137 (2011)

  121. Juranitch, J.C.: US 2011/0291425 A1, Low CO2 emissions systems (2011)

  122. Benjaminsson, G., Benjaminsson, J., Rudberg, R.B.: Power-to-Gas: A technical Review, p. 284. SGC, Malmö (2013)

    Google Scholar 

  123. Rieke, S.: ETOGAS. In: Rudberg, R., Benjaminsson, G. (eds.) Interviewers (2013, 03 14)

  124. Kopyscinski, J., Schildhauer, T.J., Biollaz, S.M.A.: Production of synthetic natural gas (SNG) from coal and dry biomass e a technology review from 1950 to 2009. Fuel 89, 1763–1783 (2010)

    Google Scholar 

  125. Liu, H., Zou, X., Wang, X., Lu, X., Ding, W.: Effect of CeO2 addition on Ni/Al2O3 catalysts for methanation of carbon dioxide with hydrogen. J. Nat. Gas Chem. 21(6), 703–709 (2012)

    Google Scholar 

  126. Liu, Z., Chu, B., Zhai, X., Jin, Y., Cheng, Y.: Total methanation of syngas to synthetic natural gas over Ni catalyst in a microchannel reactor. Fuel 95, 599–605 (2012)

    Google Scholar 

  127. Agersborg, J., Lingehed, E.: (2013) Integration of Power-to-Gas in Gasendal and GoBiGas. Master’s Thesis within the Sustainable Energy Systems programme, Chalmers University Technology

  128. Spazzafumo, G.: A Comparison Between Coal Gasification with Oxygen and Coal Hydro-gasification. Hypothesis X, Edinburg (Scotland) (2013)

    Google Scholar 

  129. Rivarolo, M., Marmi, S., Riveros-Godoy, G., Magistri, L.: Development and assessment of a distribution network of hydro-methane, methanol, oxygen and carbon dioxide in Paraguay. Energy Convers. Manag. 77, 680–689 (2014)

    Google Scholar 

  130. Rivarolo, M., Bellotti, D., Mendieta, A., Massardo, A.F.: Hydro-methane and methanol combined production from hydroelectricity and biomass: thermo-economic, analysis in Paraguay. Energy Convers. Manag. 79, 74–84 (2014)

    Google Scholar 

  131. Clusen, L.R., et al.: Techno-economic analysis of a methanol plant based on gasification of biomass and electrolysis of water. Energy 35, 2338–2347 (2010)

    Google Scholar 

  132. Easa, I., Al-musleh, Mallapragada D.S., Agrawal, R.: Continuous power supply from a baseload renewable power plant. Appl. Energy 122, 83–93 (2014)

    Google Scholar 

  133. Bierschenk, D.M., Wilson, J.R., Barnett, S.A.: High efficiency electrical energy storage using a methane–oxygen solid oxide cell. Energy Environ. Sci. 4, 944–951 (2011)

    Google Scholar 

  134. Pearson, R.J., Eisaman, M.D., Turner, J.W.G., Edwards, P.P., Zheng, J., Kuznetsov, V.L., et al.: Energy storage via carbon-neutral fuels made from CO2, water, and renewable energy. Proc. IEEE 100, 440–460 (2012)

    Google Scholar 

  135. Rostrup-Nielsen, J.R., Aasberg-Petersen, K.: Steam reforming, ATR, partial oxidation: catalysts and reaction engineering. In: Vielstich, W., Gasteiger, H.A., Lamm, A. (eds.) Handbook of Fuel Cells-Fundamentals, Technology and Applications, pp. 160–176. Wiley, New York (2003)

    Google Scholar 

  136. Huisman, G.H., Van Rens, G.L.M.A., De Lathouder, H., Cornelissen, R.L.: Cost estimation of biomass-to-fuel plants producing methanol, dimethylether or hydrogen. Biomass Bioenergy 35, S155–S166 (2011)

    Google Scholar 

  137. Jensen, J.O., Bandur, V., Bjerrum, N.J., Jensen, S.O., Ebbesen, S., Mogensen, M., Tophoj, N., Yde, L.: Pre-investigation of Water Electrolysis, PSO-F&U 2006-1-6287 (2006)

  138. Ledjeff-Hey, K., Roes, J., Wolters, R.: CO -scrubbing and methanation as purification system for PEFC. J. Power Sources 86, 556–561 (2000)

    Google Scholar 

  139. Ng, K.S., Zhang, N., Sadhukhan, J.: Techno-economic analysis of polygeneration systems with carbon capture and storage and CO2 reuse. Chem. Eng. J. 219, 96–108 (2013)

    Google Scholar 

  140. Leonzio, G.: Process analysis of biological Sabatier reaction for bio-methane production. Chem. Eng. J. 290, 490–498 (2016)

    Google Scholar 

  141. Geppert, F., Liu, D., van Eerten-Jansen, M., Weidner, E., Buisman, C., Ter Heijne, A.: Bioelectrochemical powerto-gas: state of the art and future perspectives. Trends Biotechnol. 34(11), 879–894 (2016)

    Google Scholar 

  142. Colwell, F., Boyd, S., Delwiche, M., Reed, D., Phelps, T., Newby, D.: Estimates of biogenic methane production rates in deep marine sediments at Hydrate Ridge, Cascadia Margin. Appl. Environ. Microbiol. 74, 3444–3452 (2008)

    Google Scholar 

  143. Li, Y.Y., Noike, T.: Upgrading of anaerobic digestion of waste activated sludge by thermal pretreatment. Water Sci. Technol. 26, 857–866 (1992)

    Google Scholar 

  144. Schoell, M.: Multiple origins of methane in the Earth. Chem. Geol. 71, 1–10 (1988)

    Google Scholar 

  145. Whiticar, M.J.: Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem. Geol. 161, 291–314 (1999)

    Google Scholar 

  146. Abrajano, T.A., Sturchio, N.C., Bohlke, J.K., Lyon, G.L., Poreda, R.J., Stevens, C.M.: Methane-hydrogen gas seeps, Zambales Ophiolite, Philippines: deep or shallow origin? Chem. Geol. 71, 211–222 (1988)

    Google Scholar 

  147. Horita, J., Berndt, M.E.: Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Science 285, 1055–1057 (1999)

    Google Scholar 

  148. Krajete, A.: WO 2012/110256A1, The method of converting carbon dioxide and hydrogen to methane by microorganism (2012)

  149. Díaz, I., Pérez, C., Alfaro, N., Fdz-Polanco, F.: A feasibility study on the bioconversion of CO2 and H2 to biomethane by gas sparging through polymeric membranes. Bioresour. Technol. 185, 246–253 (2015)

    Google Scholar 

  150. Bensmann, A., Hanke-Rauschenbach, R., Heyer, R., Kohrs, F., Benndorf, D., Reichl, U., Sundmacher, K.: Biological methanation of hydrogen within biogas plants: a model-based feasibility study. Appl. Energy 134, 413–425 (2014)

    Google Scholar 

  151. Burkhardt, M., Koschack, T., Busch, G.: Biocatalytic methanation of hydrogen and carbon dioxide in an anaerobic three-phase system. Bioresour. Technol. 178, 330–333 (2015)

    Google Scholar 

  152. Jwa, E., Lee, S.B., Lee, H.W., Mok, Y.S.: Plasma-assisted catalytic methanation of CO and CO2 over Ni–zeolite catalysts. Fuel Process. Technol. 108, 89–93 (2013)

    Google Scholar 

  153. da Silva, D.C.D., Letichevsky, S., Borges, L.E.P., Lu, G.: The Ni/ZrO2 catalyst and the methanation of CO and CO2. Int. J. Hydrogen Energy 37, 8923–8928 (2012)

    Google Scholar 

  154. Czekaj, I., Loviat, F., Raimondi, F., Wambach, J., Biollaz, S., Wokaun, A.: Characterization of surface processes at Ni-based catalyst during the methanation of biomass-derived synthesis gas: X-ray photoelectron spectroscopy (XPS). Appl. Catal. A 329, 68–78 (2007)

    Google Scholar 

  155. Trovarelli, A.: Catalytic properties of ceria and CeO2-containing materials. Catal. Rev. Sci. Eng. 38, 439–520 (1996)

    Google Scholar 

  156. Rahmani, S., Rezaei, M., Meshkani, F.: Preparation of highly active nickel catalysts supported on mesoporous nano crystalline g-Al2O3 for CO2 methanation. J. Ind. Eng. Chem. 20, 1346–1352 (2014)

    Google Scholar 

  157. Martin, A.: Seminar on temporary energy storage by carbon dioxide methanation to SNG using Ru and Ni containing solid catalyst (2012)

  158. Graca, I., González, L.V., Bacariza, M.C., Fernandes, A., Henriques, C., Lopes, J.M., Ribeiro, M.F.: CO2 hydrogenation into CH4 on NiHNaUSY zeolites. Appl. Catal. B 147, 101–110 (2014)

    Google Scholar 

  159. Aziz, M.A.A., Jalil, A.A., Triwahyono, S., Mukti, R.R., Taufiq-Yap, Y.H., Sazegar, M.R.: Highly active Ni-promoted mesostructured silica nanoparticles for CO2 methanation. Appl. Catal. B 147, 359–368 (2014)

    Google Scholar 

  160. Er-rbib, H., Bouallou, C.: Modeling and simulation of CO methanation process for renewable electricity storage. Energy 75, 81–88 (2014)

    Google Scholar 

  161. Ohya, H., Fun, J., Kawamura, H., Itoh, K., Ohashi, H., Aihara, M., Tanisho, S., Negishi, Y.: Methanation of carbon dioxide by using membrane reactor integrated with water vapor permselective membrane and its analysis. J. Membr. Sci. 131, 237–247 (1997)

    Google Scholar 

  162. Hwanga, H.T., Harale, A., Liu, P.K.T., Sahimi, M., Tsotsis, T.T.: A membrane-based reactive separation system for CO2 removal in a life support system. J. Membr. Sci. 315, 116–124 (2008)

    Google Scholar 

  163. Nishiguchi, H., Fukunaga, A., Miyashita, Y., Ishihara, T., Takita, Y.: Reduction of carbon dioxide to graphite carbon via methane by catalytic fixation with membrane reactor. Adv. Chem. Convers. 114, 147–152 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grazia Leonzio.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leonzio, G. Power to Gas Systems Integrated with Anaerobic Digesters and Gasification Systems. Waste Biomass Valor 12, 29–64 (2021). https://doi.org/10.1007/s12649-019-00914-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00914-4

Keywords

Navigation