Skip to main content

Advertisement

Log in

Effect of pH on the Anaerobic Fermentation of Fruit/Vegetables and Disposable Nappies Hydrolysate for Bio-hydrogen Production

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

The objective of this work was to optimize the anaerobic fermentation of a mixed waste stream, consisted of fruit and vegetables that have lost their marketing value and a disposable nappies’ hydrolysate. More specifically, the aim was to identify the optimal pH value for maximum hydrogen production and valuable metabolites such as volatile fatty acids and ethanol.

Methods

A wide range of pH values was tested (from 4.5 to 7.5 with 0.5 increment) using an automatic controller system, in batch fermentations that took place in mesophilic temperature conditions (37 °C). The first set of experiments was carried out with the fruit and vegetables mixture, diluted with water (2:3 v/v) and subsequent trials followed using the fruit and vegetable mixture with the disposable nappies’ hydrolysate at the same ratio (2:3 v/v).

Results

The maximum hydrogen volume was produced at pH 6.0 (1.34 L H2/LReactor) for the fruit/vegetable stream whereas, the maximum concentration of ethanol and volatile fatty acids (15.60 g/L) was reached at pH 6.5 for the same substrate. Regarding the mixed waste stream, both hydrogen production and metabolites concentration reached a maximum at pH 7.5 with 4.09 L H2/LReactor and 17.16 g/L respectively.

Conclusions

Different optimum pH value for bio-hydrogen production was observed between the anaerobic fermentation of the two substrates (fruit/vegetables waste and mixed waste stream). Higher overall yields and concentrations of the metabolic products were obtained with the fermentation of the mixed substrate.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Qi, N., Hu, X., Zhao, X., Li, L., Yang, J., Zhao, Y., Li, X.: Fermentative hydrogen production with peanut shell as supplementary substrate: effects of initial substrate, pH and inoculation proportion. Renew. Energy. 127, 559–564 (2018). https://doi.org/10.1016/j.renene.2018.05.018

    Article  Google Scholar 

  2. Elbeshbishy, E., Dhar, B.R., Nakhla, G., Lee, H.S.: A critical review on inhibition of dark biohydrogen fermentation. Renew. Sustain. Energy Rev. 79, 656–668 (2017)

    Article  Google Scholar 

  3. Yamin, J.A.A.: Comparative study using hydrogen and gasoline as fuels: combustion duration effect. Int. J. Energy Res. 30, 1175–1187 (2006). https://doi.org/10.1002/er.1213

    Article  Google Scholar 

  4. Ghimire, A., Frunzo, L., Pirozzi, F., Trably, E., Escudie, R., Lens, P.N.L., Esposito, G.: A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products. Appl. Energy 15, 73–95 (2015)

    Article  Google Scholar 

  5. Yun, Y.-M., Lee, M.-K., Im, S.-W., Marone, A., Trably, E., Shin, S.-R., Kim, M.-G., Cho, S.-K., Kim, D.-H.: Biohydrogen production from food waste: current status, limitations, and future perspectives. Bioresour. Technol. 248, 79–87 (2018). https://doi.org/10.1016/J.BIORTECH.2017.06.107

    Article  Google Scholar 

  6. Braguglia, C.M., Gallipoli, A., Gianico, A., Pagliaccia, P.: Anaerobic bioconversion of food waste into energy: a critical review. Bioresour. Technol. 248, 37–56 (2018)

    Article  Google Scholar 

  7. Tawfik, A., El-Qelish, M.: Continuous hydrogen production from co-digestion of municipal food waste and kitchen wastewater in mesophilic anaerobic baffled reactor. Bioresour. Technol. 114, 270–274 (2012). https://doi.org/10.1016/j.biortech.2012.02.016

    Article  Google Scholar 

  8. Ren, N.Q., Cao, G.L., Guo, W.Q., Wang, A.J., Zhu, Y.H., Liu, B.F., Xu, J.F.: Biological hydrogen production from corn stover by moderately thermophile thermoanaerobacterium thermosaccharolyticum W16. Int. J. Hydrogen Energy. 35, 2708–2712 (2010). https://doi.org/10.1016/j.ijhydene.2009.04.044

    Article  Google Scholar 

  9. Dareioti, M.A., Vavouraki, A.I., Kornaros, M.: Effect of pH on the anaerobic acidogenesis of agroindustrial wastewaters for maximization of bio-hydrogen production: a lab-scale evaluation using batch tests. Bioresour. Technol. 162, 218–227 (2014). https://doi.org/10.1016/j.biortech.2014.03.149

    Article  Google Scholar 

  10. Castelló, E., Braga, L., Fuentes, L., Etchebehere, C.: Possible causes for the instability in the H2 production from cheese whey in a CSTR. Int. J. Hydrogen Energy. 43, 2654–2665 (2018). https://doi.org/10.1016/j.ijhydene.2017.12.104

    Article  Google Scholar 

  11. Yeshanew, M.M., Frunzo, L., Pirozzi, F., Lens, P.N.L., Esposito, G.: Production of biohythane from food waste via an integrated system of continuously stirred tank and anaerobic fixed bed reactors. Bioresour. Technol. 220, 312–322 (2016). https://doi.org/10.1016/j.biortech.2016.08.078

    Article  Google Scholar 

  12. Sotelo-Navarro, P.X., Poggi-Varaldo, H.M., Turpin-Marion, S.J., Vázquez-Morillas, A., Beltrán-Villavicencio, M., Espinosa-Valdemar, R.M.: Biohydrogen production from used diapers: evaluation of effect of temperature and substrate conditioning. Waste Manag. Res. 35, 267–275 (2017). https://doi.org/10.1177/0734242X16677334

    Article  Google Scholar 

  13. EDANA: Sustanability report. ISBN 2–930159–7, D/2011/5705/1 (2015). https://www.sustainability.edana.org/Objects/10/Files/sustainabilityReport.2015.pdf

  14. Colón, J., Ruggieri, L., Sánchez, A., González, A., Puig, I.: Possibilities of composting disposable diapers with municipal solid wastes. Waste Manag. Res. 29, 249–259 (2011). https://doi.org/10.1177/0734242X10364684

    Article  Google Scholar 

  15. Colón, J., Mestre-Montserrat, M., Puig-Ventosa, I., Sánchez, A.: Performance of compostable baby used diapers in the composting process with the organic fraction of municipal solid waste. Waste Manag. 33, 1097–1103 (2013). https://doi.org/10.1016/j.wasman.2013.01.018

    Article  Google Scholar 

  16. Arena, U., Ardolino, F., Di Gregorio, F.: Technological, environmental and social aspects of a recycling process of post-consumer absorbent hygiene products. J. Clean. Prod. 127, 289–301 (2016). https://doi.org/10.1016/j.jclepro.2016.03.164

    Article  Google Scholar 

  17. Cox, J.-A., Druckman, A., Jesson, D., Mulheron, M., Smyth, M., Trew, H.: Municipal solid waste as a resource: part 2—case study in sustainable management. Proc. Inst. Civ. Eng. Waste Resour. Manag. 168, 115–130 (2015). https://doi.org/10.1680/warm.14.00012.

    Article  Google Scholar 

  18. Durmusoglu, E., Taspinar, F., Karademir, A.: Health risk assessment of BTEX emissions in the landfill environment. J. Hazard. Mater. 176, 870–877 (2010). https://doi.org/10.1016/j.jhazmat.2009.11.117

    Article  Google Scholar 

  19. Edwards, J., Othman, M., Crossin, E., Burn, S.: Life cycle assessment to compare the environmental impact of seven contemporary food waste management systems. Bioresour. Technol. 248, 156–173 (2018). https://doi.org/10.1016/j.biortech.2017.06.070

    Article  Google Scholar 

  20. Mohd Yasin, N.H., Rahman, N.A., Man, H.C., Mohd Yusoff, M.Z., Hassan, M.A.: Microbial characterization of hydrogen-producing bacteria in fermented food waste at different pH values. Int. J. Hydrogen Energy. 36, 9571–9580 (2011). https://doi.org/10.1016/j.ijhydene.2011.05.048

    Article  Google Scholar 

  21. Khan, M.A., Ngo, H.H., Guo, W.S., Liu, Y., Nghiem, L.D., Hai, F.I., Deng, L.J., Wang, J., Wu, Y.: Optimization of process parameters for production of volatile fatty acid, biohydrogen and methane from anaerobic digestion. Bioresour. Technol. 219, 738–748 (2016). https://doi.org/10.1016/j.biortech.2016.08.073

    Article  Google Scholar 

  22. Wang, J., Wan, W.: Factors influencing fermentative hydrogen production: a review. Front. Niosci. 22, 1195–1220 (2009)

    Google Scholar 

  23. Conway, M.E., Jooste, F., Smith, M.D.: Treatment of absorbent sanitary paper products. J. Clean. Prod. US Patent (1997). https://doi.org/10.1016/S0959-6526(97)82420-1

  24. APHA/AWWA/WEF: Standard methods for the examination of water and wastewater. Stand Methods 541. APHA/AWWA/WEF, Washington (2012)

  25. Joseffson, B.: Rapid spectrophotometric determination of total carbohydrates. In: Grasshoff, K., Ehrhardt, M., Kremling, K. (eds.) Methods Seawater, pp. 340–342. Anal. Verlag Chemie GmbH, Weinheim (1983)

    Google Scholar 

  26. Waterman, P.G., Mole, S.: Analysis of Phenolic Plant Metabolites. Blackwell, Oxford (1994)

    Google Scholar 

  27. Kirchmann, H., Pettersson, S.: Human urine: Chemical composition and fertilizer use efficiency. Fertil. Res. 40, 149–154 (1994). https://doi.org/10.1007/BF00750100

    Article  Google Scholar 

  28. Fisgativa, H., Tremier, A., Dabert, P.: Characterizing the variability of food waste quality: a need for efficient valorisation through anaerobic digestion. Waste Manag. 50, 264–274 (2016). https://doi.org/10.1016/j.wasman.2016.01.041

    Article  Google Scholar 

  29. Nguyen, D., Gadhamshetty, V., Nitayavardhana, S., Khanal, S.K.: Automatic process control in anaerobic digestion technology: a critical review. Bioresour. Technol. 193, 513–522 (2015)

    Article  Google Scholar 

  30. Ginkel, S.V., Sung, S., Lay, J.J.: Biohydrogen production as a function of pH and substrate concentration. Environ. Sci. Technol. 35, 4726–4730 (2001). https://doi.org/10.1021/es001979r

    Article  Google Scholar 

  31. Chu, C.F., Li, Y.Y., Xu, K.Q., Ebie, Y., Inamori, Y., Kong, H.N.: A pH- and temperature-phased two-stage process for hydrogen and methane production from food waste. Int. J. Hydrogen Energy 33, 4739–4746 (2008). https://doi.org/10.1016/j.ijhydene.2008.06.060

    Article  Google Scholar 

  32. Wang, K., Yin, J., Shen, D., Li, N.: Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: effect of pH. Bioresour. Technol. 161, 395–401 (2014). https://doi.org/10.1016/j.biortech.2014.03.088

    Article  Google Scholar 

  33. Wu, Y., Ma, H., Zheng, M., Wang, K.: Lactic acid production from acidogenic fermentation of fruit and vegetable wastes. Bioresour. Technol. 191, 53–58 (2015). https://doi.org/10.1016/j.biortech.2015.04.100

    Article  Google Scholar 

  34. Ren, N., Wang, B., Huang, J.C.: Ethanol-type fermentation from carbohydrate in high rate acidogenic reactor. Biotechnol. Bioeng. 54, 428–433 (1997)

    Article  Google Scholar 

  35. Zhang, Y.-J., Jiang, J.-G., Wang, J.-M.: Effect of pH value on VFA concentration and composition during anaerobic fermentation of kitchen waste. China Environ. Sci. 33, 680–684 (2013)

    Google Scholar 

  36. Thauer, R.K., Jungermann, K., Decker, K.: Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41, 100–180 (1977)

    Google Scholar 

  37. Stavropoulos, K.P., Kopsahelis, A., Zafiri, C., Kornaros, M.: Effect of pH on continuous biohydrogen production from end-of-life dairy products (EoL-DPs) via dark fermentation. Waste Biomass. Valoriz. 7, 753–764 (2016). https://doi.org/10.1007/s12649-016-9548-7

    Article  Google Scholar 

  38. Khanal, S.K., Chen, W.H., Li, L., Sung, S.: Biological hydrogen production: effects of pH and intermediate products. Int. J. Hydrogen Energy. 29, 1123–1131 (2004). https://doi.org/10.1016/j.ijhydene.2003.11.002

    Article  Google Scholar 

  39. Papoutsakis, E.T.: Equations and calculations for fermentations of butyric acid bacteria. Biotechnol. Bioeng. 67, 813–826 (2000)

    Article  Google Scholar 

  40. Lee, C., Lee, S., Han, S.-K., Hwang, S.: Effect of operational pH on biohydrogen production from food waste using anaerobic batch reactors. Water Sci. Technol. 69, 1886–1893 (2014). https://doi.org/10.2166/wst.2014.097

    Article  Google Scholar 

  41. Suo, Y., Fu, H., Ren, M., Yang, X., Liao, Z., Wang, J.: Butyric acid production from lignocellulosic biomass hydrolysates by engineered Clostridium tyrobutyricum overexpressing Class I heat shock protein GroESL. Bioresour. Technol. 250, 691–698 (2018). https://doi.org/10.1016/j.biortech.2017.11.059

    Article  Google Scholar 

  42. Shi, E., Li, J., Zhang, M.: Application of IWA anaerobic digestion model no. 1 to simulate butyric acid, propionic acid, mixed acid, and ethanol type fermentative systems using a variable acidogenic stoichiometric approach. Water Res. 161, 242–250 (2019). https://doi.org/10.1016/j.watres.2019.05.094

    Article  Google Scholar 

  43. Fang, H.H.P., Liu, H.: Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour. Technol. 82, 87–93 (2002). https://doi.org/10.1016/S0960-8524(01)00110-9

    Article  Google Scholar 

  44. Jiang, J., Zhang, Y., Li, K., Wang, Q., Gong, C., Li, M.: Volatile fatty acids production from food waste: effects of pH, temperature, and organic loading rate. Bioresour. Technol. 143, 525–530 (2013). https://doi.org/10.1016/j.biortech.2013.06.025

    Article  Google Scholar 

  45. Zhou, M., Yan, B., Wong, J.W.C., Zhang, Y.: Enhanced volatile fatty acids production from anaerobic fermentation of food waste: a mini-review focusing on acidogenic metabolic pathways. Bioresour. Technol. 248, 68–78 (2018)

    Article  Google Scholar 

  46. Ren, N., Xing, D., Rittmann, B.E., Zhao, L., Xie, T., Zhao, X.: Microbial community structure of ethanol type fermentation in bio-hydrogen production. Environ. Microbiol. 9, 1112–1125 (2007). https://doi.org/10.1111/j.1462-2920.2006.01234.x

    Article  Google Scholar 

  47. Sivagurunathan, P., Sen, B., Lin, C.Y.: Overcoming propionic acid inhibition of hydrogen fermentation by temperature shift strategy. Int. J. Hydrogen Energy 39, 19232–19241 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of this study by the European Commission - Executive Agency for Small and Medium-sized Enterprises (EASME) - Project WASTE4THINK (H2020 - GA 688995) “Moving towards Life Cycle Thinking by integrating Advanced Waste Management Systems”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kornaros.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsigkou, K., Tsafrakidou, P., Athanasopoulou, S. et al. Effect of pH on the Anaerobic Fermentation of Fruit/Vegetables and Disposable Nappies Hydrolysate for Bio-hydrogen Production. Waste Biomass Valor 11, 539–551 (2020). https://doi.org/10.1007/s12649-019-00854-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00854-z

Keywords

Navigation