Skip to main content

Advertisement

Log in

Valorization of Fish By-Products Using Reactive Extrusion for Biodiesel Production and Optimization

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In this paper we present the reactive extrusion process as a method of lipids extraction from by-products of fish. The study focuses on two essential points which are by-product enzymatic hydrolysis efficiency of three fish types, and the technical feasibility of producing a biodiesel from the fish lipids. The parameters of extrusion process were optimized in order to extract the more important percentage of oil. The results of the extracted oil from the three fish types were compared with other techniques such as batch process. Following the enzymatic hydrolysis, the chemical composition and the total fatty acids percentage are determined for each fish oil types in order to select the suitable oil for biodiesel production. Then the selected oil goes through transesterification, and we recover the methyl esters. The results of this study show that the enzymatic hydrolysis of the fish by-products by using the reactive extrusion process is interesting. Moreover, the valorization of fish by-products allows the marine waste recycling while producing biofuel. The produced biofuel can be used as an additive in a diesel fuel.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Guy, R.: Extrusion Cooking: Technologies and Applications. Woodhead Publishing in Food Science and Technology Elsevier, Amsterdam (2001)

  2. Duffossé, P., Delamare, L., Berzin, F., Vergnes, B.: Modeling of peroxide initiated controlled degradation of polypropylene in a twin-screw extruder. Polym. Eng. Sci. 40, 344–356 (2000)

    Article  Google Scholar 

  3. Choulak, S.E.: Modélisation et commande d’un procédé d’extrusion réactive.Thèse de doctorat, Université Claude Bernard – Lyon 1 (2004)

  4. Berzin, F., Hu, G.H., Procédés d’extrusion réactive. Tech L’ingénieur, no. AM3654 (2004)

  5. Colak, B.Y.: Utilisation du caséinate de sodium pour la fabrication de films actifs pour l'emballage alimentaire : étude des propriétés barrières aux gaz, de l'activité antimicrobienne et de la biodégradabilité. Université Jean Monnet, Saint-Etienne, Thèse de doctorat (2014)

    Google Scholar 

  6. Sahyoun, J.: Développement de nouveaux matériaux polymères ignifugeants par la voie extrusion réactive. Thèse de doctorat, Université Claude Bernard – Lyon 1 (2014)

  7. Gutierrez, N.C.: Incorporation et liberation de composes organiques volatils dans une matrice d’agromateriaux par extrusion bi-vis. Université de Toulouse, Thèse de doctorat (2016)

    Google Scholar 

  8. Le Roux, K.: Purification de la chitine par hydrolyse enzymatique à partir de coproduits de crevette Penaeus vannamei. Université de Nantes, Caractérisations des produits et optimisation du procédé. Thèse de doctorat (2012)

    Google Scholar 

  9. Vauchel, P.: Optimisation de procédés innovants pour l’obtention de phycocolloides. Université de Nantes, Thèse de doctorat (2007)

    Google Scholar 

  10. Makoure, D., Arhaliass, A., Echchelh, A., Baron, R., Legrand, J.: Reactive and / or enzymatic extrusion process for phycocolloids extraction: application to sea products. in ISTE OpenScience.London,UK (2019)

  11. Fodil-Pacha, F.: Contribution à l’identification dynamique et à la commande de l'extrudeuse BC21 Clextral. Université de Nantes, Thèse de doctorat (2007)

    Google Scholar 

  12. Andrieux, G.: La filière française des co-produits de la pêche et de l’aquaculture: état des lieux et analyse. Etude de l’OFIMER. p 63 (2004)

  13. Rago, D., Rasmussen, M.A., Lee-Sarwar, K.A., Weiss, S.T., Lasky-Su, J., Stokholm, J., Bønnelykke, K., Chawes, B.L., Bisgaard, H.: Fish-oil supplementation in pregnancy, child metabolomics and asthma risk. EBioMedicine. 46, 399–410 (2019)

    Article  Google Scholar 

  14. Yorulmaz, E., Yorulmaz, H., Gökmen, E.S., Altınay, S., Küçük, S.H., Zengi, O., Çelik, D.S., Şit, D.: Therapeutic effectiveness of rectally administered fish oil and mesalazine in trinitrobenzenesulfonic acid-induced colitis. Biomed. Pharmacother. 118, 109247 (2019)

    Article  Google Scholar 

  15. Royon, D., Daz, M., Ellenrieder, G., Locatelli, S.: Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresour. Technol. 98(3), 648–653 (2007)

    Article  Google Scholar 

  16. Noureddini, H., Zhu, D.: Kinetics of Transesterification of Soybean Oil. J. Am. Oil Chem. 74(11), 1457–1463 (1997)

    Article  Google Scholar 

  17. Watanabe, Y., Shimada, Y., Sugihara, A., Tominaga, Y.: Conversion of degummed soybean oil to biodiesel fuel with immobilized Candida antarctica lipase. J. Mol. Catal. B Enzym. 17, 151–155 (2002)

    Article  Google Scholar 

  18. Zhang, Y., Dubé, M.A., McLean, D.D., Kates, M.: Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresour Technol 90(3), 229–240 (2003)

  19. Acaroglu, M., Oguz, H., Ögüt, H.: An investigation of the use of rapeseed oil in agricultural tractors as engine oil. Energy Sources 23(9), 823–830 (2001)

    Article  Google Scholar 

  20. Kusdiana, D., Saka, S.: Kinetics of transesteri®cation in rapeseed oil to biodiesel fuel as treated in supercritical methanol. Fuel 80, 693–698 (2001)

    Article  Google Scholar 

  21. Harrington, K.J., D’Arcy-Evans, C.: Transesterification in Situ of Sunflower Seed Oil. Ind Eng Chem Prod Res Dev 24(2), 314–318 (1985)

    Article  Google Scholar 

  22. Saifuddin, N., Chua, K.H.: Production of ethyl ester (biodiesel) from used frying oil: optimization of transesterification process using microwave irradiation. Malaysian J. Chem. 6(1), 77–82 (2004)

    Google Scholar 

  23. Tomasevic, A.V., Siler-Marinkovic, S.S.: Methanolysis of used frying oil. Fuel Process. Technol. 81(1), 1–6 (2003)

    Article  Google Scholar 

  24. Otera, J.: Transesterification. Chem. Rev. 93, 1449–1470 (1993)

    Article  Google Scholar 

  25. Gervajio, G.C.: Fatty Acids and Derivatives from Coconut Oil. in Bailey’s Industrial Oil and Fat Products, Ed. Wiley (2005)

  26. Awad, S.: Contribution à l'étude de la valorisation énergétique des résidus graisseux et de leur combustion dans les moteurs à combustion interne. Université de Nantes, Thèse de doctorat (2011)

    Google Scholar 

  27. Awad, S., Paraschiv, M., Varuvel, E.G., Tazerout, M.: Optimization of biodiesel production from animal fat residue in wastewater using response surface methodology. Bioresour. Technol. 129, 315–320 (2013)

    Article  Google Scholar 

  28. Esteban, M.B., García, A.J., Ramos, P., Márquez, M.C.: Evaluation of fruit-vegetable and fish wastes as alternative feedstuffs in pig diets.Waste Manag. 27, 193–200 (2007)

  29. Coward-Kelly, G., Agbogbo, F.K., Holtzapple, M.T.: Lime treatment of shrimp head waste for the generation of highly digestible animal feed. Bioresour. Technol. 97, 1515–1520 (2006)

    Article  Google Scholar 

  30. Kim, Y.S., Park, J.W., Choi, Y.J.: New approaches for the effective recovery of fish proteins and their physicochemical characteristics. Fish. Sci. 69, 1231–1239 (2003)

    Article  Google Scholar 

  31. Dorado, M.P., Ballesteros, E., Lo, F.J., Mittelbach, M.: Optimization of Alkali-catalyzed transesterification of brassica carinata oil for biodiesel production. Energy Fuels 18, 77–83 (2004)

    Article  Google Scholar 

  32. Tacon, A.G.J., Metian, M.: Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: trends and future prospects. Aquaculture 285(1–4), 146–158 (2008)

    Article  Google Scholar 

  33. Tarhouni, A., Ben, M., Talbi, O., Elbour, M., Sadok, S., Mihoubi, N.: New integrated process for production of edible and fishmeal powders from sardines: drying kinetics and quality attributes. Process Saf. Environ. Prot. 122, 352–365 (2019)

    Article  Google Scholar 

Download references

Funding

This study was funded by CAMPUS FRANCE (PHC TOUBKAL 201X (French-Morocco bilateral program) Grant Number: 12345AB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdellah Arhaliass.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 712 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makoure, D., Arhaliass, A., Echchelh, A. et al. Valorization of Fish By-Products Using Reactive Extrusion for Biodiesel Production and Optimization. Waste Biomass Valor 11, 6285–6293 (2020). https://doi.org/10.1007/s12649-019-00840-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00840-5

Keywords

Navigation