Skip to main content

Advertisement

Log in

Obtaining Hydroxytyrosol from Olive Mill Waste Using Deep Eutectic Solvents and Then Supercritical CO2

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The main objective of this study was to recover hydroxytyrosol from olive mill waste (olive leaves and a semi-solid waste with a 65–75% of humidity called alperujo). The recovery process involved solid–liquid extractions using two hydrophilic deep eutectic solvents (DESs), CIS-DES (a 1:1 mixture of choline chloride and citric acid) and Etagline (a 1:2 mixture of choline chloride and ethylene glycol). The results achieved using this non-conventional process was compared with the results achieved using conventional solid–liquid extraction processes using ethanol, methanol, and water. The extraction ratio (R) achieved using Etagline DES was 11.4 times higher than the R achieved using methanol. The hydroxytyrosol extraction efficiencies were higher when using the selected DESs than using methanol, under the same working conditions. On the other hand, with the use of DES it is possible to obtain similar extraction efficiencies to those obtained with organic solvents, but using 75% less extraction phase, when DESs were used instead of methanol. The DES extraction processes gave high re-extraction capacities when supercritical CO2 was used as a stripping phase. The highest pure hydroxytyrosol extraction efficiency, 80%, was achieved using Etagline and supercritical CO2 re-extraction at a pressure and temperature close to the critical values. The results suggest that DES is an efficient, safe, and sustainable alternative to methanol for extracting bioactive compounds from olive mill waste and that DES extraction combined with supercritical CO2 extraction can be classed as a green process.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Férnandez-Mar et al. [34]

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

HT:

Hydroxytyrosol

T:

Tyrosol

OI:

Oleuropeine

OMW:

Olive mill waste

OL:

Olive leaves

DESs:

Deep Eutectic Solvents

CO2 :

Carbon dioxide

EtOH:

Ethanol

MetOH:

Methanol

HPLC:

High performance liquid chromatography

R:

Extraction ratio

SCE:

Supercritical fluid extraction

GAE:

Gallic acid equivalent

w/w:

Refer to mass fraction

v/v:

Referred to volume/volume percent

DW:

Dry waste

S/L:

Solid/liquid extraction process

References

  1. El-Abbassi, A., Hafidi, A., García-Payo, M.C.: Integrated direct contact membrane distillation for olive mill wastewater treatment. Desalination 323, 31–38 (2013)

    Article  Google Scholar 

  2. Cassano, A., Conidi, C., Giorno, L., Drioli, E.: Fractionation of olive mill wastewaters by membrane separation techniques. J. Hazard. Mater. 185, 248–249 (2013)

    Google Scholar 

  3. Chowdhury, A.K.M.M.B., Akratos, C.S., Vayenas, V. Pavlou, S.: Olive mill waste composting: a review. Int. Biodeterior. Biodegr. 85, 108–119 (2013).

    Article  Google Scholar 

  4. Rubio-Senent, F., Rodríguez-Gutiérrez, G., Lama-Muñoz, A., Fernández-Bolaños, J.: Chemical characterization and properties of a polymeric phenolic fraction obtained from olive oil waste. Food Res. Int. 54, 2122–2129 (2013)

    Article  Google Scholar 

  5. Robles-Almazan, M., Pulido-Moran, M., Moreno-Fernández, J., Ramirez-Tortosa, C., Rodriguez-Garcia, C., Quiles, J., Ramirez-Tortosa, M.C.: Hydroxytyrosol: Bioavailability, toxicity, and clinical applications. Food Res. Int. 105, 654–667 (2018)

    Article  Google Scholar 

  6. Sun, Y., Zhou, D., Shahidi, F.: Antioxidant properties of tyrosol and hydroxytyrosol saturated fatty acid esters. Food Chem. 245, 1262–1268 (2018)

    Article  Google Scholar 

  7. Bernini, R., Meredino, N., Romani, A., Velotti, F.: Naturally occurring hydroxytyrosol: synthesis and anticancer potential. Curr. Med. Chem. 20(5), 655–670 (2013)

    Article  Google Scholar 

  8. Millares, P., Chisvert, A., Salvador, A.: Determination of hydroxytyrosol and tyrosol by liquid chromatography for the quality control of cosmetic products based on olive extracts. J. Pharmaceut. Biomed. 102, 157 (2015)

    Article  Google Scholar 

  9. D’Antuono, I., Kontogianni, V., Kotsiou, K., Linsalata, V., Logriego, A., Tasioula- Margari, M., Cardinalli, A.: Polyphenolic characterization of olive mill wastewaters, coming from Italian and Greek olive cultivars, after membrane technology. Food Res. Int. 65, 301 (2014)

    Article  Google Scholar 

  10. Sannino, F., De Martino, A., Capasso, R., El Hadrami, I.: Valorization of organic matter in olive mill wastewaters: Recovery of highly pure hydroxytyrosol. J J. Geochem. Explor 129, 34–39 (2013)

    Article  Google Scholar 

  11. Fava, G., Di Mauro, M.D., Spampinato, M., Biondi, D., Gambera, G., Centonze, G., Maggiore, R., D’Antona, N.: Hydroxytyrosol recovery from olive mill wastewaters: Process optimization and development of a pilot plant. Clean-Soil Air Water 45(4), 1600042 (2017)

    Article  Google Scholar 

  12. Allouche, N., Fki, I., Sayadi, S.: Toward a high yield recovery of antioxidants and purified hydroxytyrosol from olive mill wastewaters. J. Agric. Food Chem. 54, 267–273 (2004)

    Article  Google Scholar 

  13. Galanakis, C.: Separation of macromolecules and micromolecules: from ultrafiltration to the border of nanofiltration. Trends Food Sci. Technol. 42, 44–63 (2015)

    Article  Google Scholar 

  14. El-Abbassi, A., Hafidi, A., Khayet, M., García-Payo, M.C.: Integrated direct contact membrane distillation for olive mill wastewater treatment. Desalination 323, 31–38 (2013)

    Article  Google Scholar 

  15. El-Abbassi, A., Khayet, M., Kiai, H., Hafidi, A., García-Payo, M.C.: Treatment of crude olive mill wastewaters by osmotic distillation and osmotic membrane distillation. Sep. Purif. Technol. 104, 327–332 (2013)

    Article  Google Scholar 

  16. Garcia-Castello, E., Cassano, A., Criscuoli, A., Conidi, C., Drioli, E.: Recovery and concentration of polyphenols from olive mill wastewaters by integrated membrane system. Water Res. 44, 3883–3892 (2010)

    Article  Google Scholar 

  17. Rubio-Senent, F., Rodríguez-Gutiérrez, G., Lama-Muñoz, A., Fernández-Bolaños, J.: Food Res. Int. 54, 114 (2013)

    Article  Google Scholar 

  18. Ugurlu, M., Hazirbulan, S.: Removal of some organic compounds from pre-treated olive mill wastewater by sepiolite. Fresen. Environ. Bull. 16, 887 (2007)

    Google Scholar 

  19. García, A., Rodríguez-Juan, E., Rodríguez-Gutiérrez, G., Rios, J., Fernández-Bolaños, J.: Extraction of phenolic compounds from virgin olive oil by Deep Eutectic Solventes (DESs). Food Chem. 19, 554 (2016)

    Article  Google Scholar 

  20. Dai, Y., van Spronsen, J., Witkamp, G.J., Verpoorte, R., Choi, Y.H.: Natural deep eutectic solvents as a new potential media for green technology. Anal. Chim. Acta 766, 61 (2013)

    Article  Google Scholar 

  21. Sarrade, S., Guizard, C., Rios, G.M.: New application of supercritical fluids and supercritical fluids processes in separation. Sep. Purif. Technol. 32, 57–63 (2003)

    Article  Google Scholar 

  22. Estay, H., Bocquet, S., Romero, J., Sanchez, J., Rios, G.M., Valenzuela, F.: Modeling and simulation of mass transfer in near-critical extraction using hollow fiber membrane contactor. Chem. Eng. Sci. 62, 5794 (2007)

    Article  Google Scholar 

  23. Cabezas, R., Plaza, A., Merlet, G., Romero, J.: Effect of fluid dynamic conditions on the recovery of ABE fermentation products by membrane- based dense gas extraction. Chem. Eng. Process. 95, 80 (2015)

    Article  Google Scholar 

  24. Valadez-Carmona, L., Ortiz-Moreno, A., Ceballos-Reyes, G.: Valorization of cacao pod husk through supercritical fluid extraction of phenolic compounds. J. Supercrit. Fluid. 131, 99 (2018)

    Article  Google Scholar 

  25. Medeiros, L., Panizzon, G., Alves, B., Simionato, A., Cardozo-Filho, L., Andrade, G.,Gonçalves de Oliverira, A., Guedes, T., Palazzo, J.: Guarana (Paullinia cupana) seeds: selective supercritical extraction of phenolic compounds. Food Chem. 212, 703 (2016).

    Article  Google Scholar 

  26. Baldino, L., Della, G., Sesti, L., Reverchon, E., Adami, R.: Concentrated Oleuropein powder from olive leaves using alcoholic extraction and supercritical CO2 assisted extraction. J. Supercrit. Fluid. 133, 65 (2018)

    Article  Google Scholar 

  27. Şahin, S., Bilgin, M., Dramur, M.U.: Investigation of Oleuropein content in olive leaf extract obtained by supercritical fluid extraction and soxhlet methods. Sep. Sci. Technol. 46, 1829 (2011)

    Article  Google Scholar 

  28. Sannino, F., De Martino, A., Capasso, R., El Hadrasmi, I.: Valorization of organic matter in olive mill wastewaters: Recovery of highly pure hydroxytyrosol. J. Geochem. Explor. 129, 34–39 (2013)

    Article  Google Scholar 

  29. Hamza, M., Sayadi, S.: Valorization of olive mill wastewater by enhancement of natural hydroxytyrosol recovery. Int. J. Food Sci. Tech. 50, 826–833 (2015)

    Article  Google Scholar 

  30. Bazzarelli, F., Piacentini, E., Poerio, T., Mazzei, R., Cassano, A.: Advances in membrane operation for water purification and biophenols recovery/valorization from OMWWs. J. Membrane Sci. 497, 402–409 (2016)

    Article  Google Scholar 

  31. Fernández, M.A., Espino, M., Gomez, F., Silva, M.F.: Novel approaches mediated by tailor-made green solvents for the extraction of phenolic compounds from agro-food industrial by-products. Food Chem. 239, 671–678 (2018)

    Article  Google Scholar 

  32. Chanioti, S., Tzia, C.: Extraction of phenolic compounds from olive pomace by using natural deep eutectic solvents and innovative extraction techniques. Innov. Food Sci. Emerg. 48, 228–239 (2018)

    Article  Google Scholar 

  33. Perry, R.: Manual del Ingeniero Químico. Sexta Edición, Editorial McGraw- Hill. Tomo, vol. 3, pp. 10–293 (1992).

  34. Fernández-Mar, M.I., Mateos, R., García-Parrilla, M.C., Puertas, B., Cantos-Villar, E.: Bioactive compounds in wine: resveratrol, hydroxytyrosol and melatonin: A review. Food Chem. 130, 797–813 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This study was performed as part of the research projects FONDECYT de Iniciación 11150255 and Project POSTDOC_DICYT, Código 0217111RF, Vicerrectoría de Investigación, Desarrollo e Innovación, Universidad de Santiago de Chile, Usach.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Plaza.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plaza, A., Tapia, X., Yañez, C. et al. Obtaining Hydroxytyrosol from Olive Mill Waste Using Deep Eutectic Solvents and Then Supercritical CO2. Waste Biomass Valor 11, 6273–6284 (2020). https://doi.org/10.1007/s12649-019-00836-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00836-1

Keywords

Navigation