Skip to main content

Advertisement

Log in

Evaluation of the Effect of Different Extraction Techniques on Sour Cherry Pomace Phenolic Content and Antioxidant Activity and Determination of Phenolic Compounds by FTIR and HPLC

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Sour cherry pomace derived from mashed cherries that maintains the color and beneficial properties of the cherries (Prunus cerasus L.). In this study, microwave-assisted extraction (MAE) (900 W for 30, 60 and 90 s.), high hydrostatic pressure (HHP) (400 and 500 MPa for 1, 5 and 10 min at 20 °C) and ultrasonic-assisted extraction (UAE) (for 5,10 and 15 min with a power of 100%) was used as novel processes. Total phenolic content (TPC), morphological changes, antioxidant activity (AA) and structural changes of cherry pomace were measured by the Folin–Ciocalteu assay, high performance liquid chromatography (HPLC), DPPH-scavenging activity, scanning electron microscopy (SEM) and Fourier transform infrared spectrometry (FTIR). According to the results, all novel technologies (MAE-HHP-UAE) increase PC and AA with respect to conventional solvent extraction method (50 °C and 30 min) (CSE). Among novel technologies, MAE (90 s) had highest TPC (275.31 ± 4.26 GAE/100 g FW) and also had highest antioxidant activity (89.9 ± 0.22%). The lowest TPC and AA values were 108.36 ± 3.99 mg gallic acid equivalent (GAE)/100 g fresh weight (FW) and 71.30 ± 1.21% in CSE, respectively. According to FTIR results, there are no significant structural changes in samples when different extraction techniques were applied. Individual phenolics were quantified by using HPLC for different extraction techniques.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Balasundram, N., Sundram, K., Samman, S.: Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem. 99, 191–203 (2006). https://doi.org/10.1016/J.FOODCHEM.2005.07.042

    Article  Google Scholar 

  2. Peschel, W., Sánchez-Rabaneda, F., Diekmann, W., Plescher, A., Gartzía, I., Jiménez, D., Lamuela-Raventós, R., Buxaderas, S., Codina, C.: An industrial approach in the search of natural antioxidants from vegetable and fruit wastes. Food Chem. 97, 137–150 (2006). https://doi.org/10.1016/J.FOODCHEM.2005.03.033

    Article  Google Scholar 

  3. Hu, F.B.: Plant-based foods and prevention of cardiovascular disease: an overview. Am. J. Clin. Nutr. 78, 544S–551S (2003). https://doi.org/10.1093/ajcn/78.3.544S

    Article  Google Scholar 

  4. He, F.J., Nowson, C.A., Lucas, M., MacGregor, G.A.: Increased consumption of fruit and vegetables is related to a reduced risk of coronary heart disease: Meta-analysis of cohort studies. J. Hum. Hypertens. 21, 717–728 (2007). https://doi.org/10.1038/sj.jhh.1002212

    Article  Google Scholar 

  5. King, A.J.G., Youez, G.: An evaluation of the evidence associating the phenolic phytochemicals in food with cancer chemoprevention. http://www.sciencedirect.com/science/article/pii/S000282239600497X, (1996)

  6. Stoner, G.D., Wang, L.S., Casto, B.C.: Laboratory and clinical studies of cancer chemoprevention by antioxidants in berries. Carcinogenesis 29, 1665–1674 (2008). https://doi.org/10.1093/carcin/bgn142

    Article  Google Scholar 

  7. Wang, L.: Energy efficiency technologies for sustainable food processing. Energy Effic. 7, 791–810 (2014). https://doi.org/10.1007/s12053-014-9256-8

    Article  Google Scholar 

  8. Seeram, N.P., Momin, R.A., Nair, M.G., Bourquin, L.D.: Cyclooxygenase inhibitory and antioxidant cyanidin glycosides in cherries and berries. Phytomedicine 8, 362–369 (2001). https://doi.org/10.1078/0944-7113-00053

    Article  Google Scholar 

  9. Mulabagal, V., Lang, G.A., Dewitt, D.L., Dalavoy, S.S., Nair, M.G.: Anthocyanin content, lipid peroxidation and cyclooxygenase enzyme inhibitory activities of sweet and sour cherries. J. Agric. Food Chem. 57, 1239–1246 (2009). https://doi.org/10.1021/jf8032039

    Article  Google Scholar 

  10. Kang, S.Y., Seeram, N.P., Nair, M.G., Bourquin, L.D.: Tart cherry anthocyanins inhibit tumor development in ApcMin mice and reduce proliferation of human colon cancer cells. Cancer Lett. 194, 13–19 (2003). https://doi.org/10.1016/S0304-3940(02)00583-9

    Article  Google Scholar 

  11. Tomás-Barberán, F.A., Gil, M.I., Cremin, P., Waterhouse, A.L., Hess-Pierce, B., Kader, A.A.: HPLC—DAD—ESIMS analysis of phenolic compounds in nectarines, peaches, and plums. J. Agric. Food Chem. 49, 4748–4760 (2001). https://doi.org/10.1021/jf0104681

    Article  Google Scholar 

  12. Fragoso, S., Mestres, M., Busto, O., Guasch, J.: Comparison of three extraction methods used to evaluate phenolic ripening in red grapes. J. Agric. Food Chem. 58, 4071–4076 (2010). https://doi.org/10.1021/jf9040639

    Article  Google Scholar 

  13. Mújica-Paz, H., Valdez-Fragoso, A., Samson, C.T., Welti-Chanes, J., Torres, A.: High-pressure processing technologies for the pasteurization and sterilization of foods. Food Bioprocess Technol. 4, 969–985 (2011). https://doi.org/10.1007/s11947-011-0543-5

    Article  Google Scholar 

  14. Prasad, K.N., Yang, E., Yi, C., Zhao, M., Jiang, Y.: Effects of high pressure extraction on the extraction yield, total phenolic content and antioxidant activity of longan fruit pericarp. Innov. Food Sci. Emerg. Technol. 10, 155–159 (2009). https://doi.org/10.1016/J.IFSET.2008.11.007

    Article  Google Scholar 

  15. Corrales, M., Toepfl, S., Butz, P., Knorr, D., Tauscher, B.: Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: a comparison. Innov. Food Sci. Emerg. Technol. 9, 85–91 (2008). https://doi.org/10.1016/j.ifset.2007.06.002

    Article  Google Scholar 

  16. Proestos, C., Komaitis, M.: Application of microwave-assisted extraction to the fast extraction of plant phenolic compounds. LWT—Food Sci. Technol. 41, 652–659 (2008). https://doi.org/10.1016/J.LWT.2007.04.013

    Article  Google Scholar 

  17. Wang, L., Weller, C.L.: Recent advances in extraction of nutraceuticals from plants. Trends Food Sci. Technol. 17, 300–312 (2006). https://doi.org/10.1016/J.TIFS.2005.12.004

    Article  Google Scholar 

  18. Wu, T., Yan, J., Liu, R., Marcone, M.F., Aisa, H.A., Tsao, R.: Optimization of microwave-assisted extraction of phenolics from potato and its downstream waste using orthogonal array design. Food Chem. 133, 1292–1298 (2012). https://doi.org/10.1016/J.FOODCHEM.2011.08.002

    Article  Google Scholar 

  19. Routray, W., Orsat, V.: Microwave-assisted extraction of flavonoids: a review. Food Bioprocess Technol. 5, 409–424 (2012). https://doi.org/10.1007/s11947-011-0573-z

    Article  Google Scholar 

  20. Vinatoru, M.: An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason. Sonochem. 8, 303–313 (2001). https://doi.org/10.1016/S1350-4177(01)00071-2

    Article  Google Scholar 

  21. Carrera, C., Ruiz-Rodríguez, A., Palma, M., Barroso, C.G.: Ultrasound assisted extraction of phenolic compounds from grapes. Anal. Chim. Acta 732, 100–104 (2012). https://doi.org/10.1016/j.aca.2011.11.032

    Article  Google Scholar 

  22. Da Porto, C., Porretto, E., Decorti, D.: Comparison of ultrasound-assisted extraction with conventional extraction methods of oil and polyphenols from grape (Vitis vinifera L.) seeds. Ultrason. Sonochem. 20, 1076–1080 (2013). https://doi.org/10.1016/j.ultsonch.2012.12.002

    Article  Google Scholar 

  23. Khan, M.K., Abert-Vian, M., Fabiano-Tixier, A.-S., Dangles, O., Chemat, F.: Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chem. 119, 851–858 (2010). https://doi.org/10.1016/j.foodchem.2009.08.046

    Article  Google Scholar 

  24. Hidalgo, G.-I., Almajano, M.P.: Red fruits: extraction of antioxidants, phenolic content, and radical scavenging determination. Antioxidants (2017). https://doi.org/10.3390/antiox6010007

    Article  Google Scholar 

  25. Silva, S.D., Feliciano, R.P., Boas, L.V., Bronze, M.R.: Application of FTIR-ATR to moscatel dessert wines for prediction of total phenolic and flavonoid contents and antioxidant capacity. Food Chem. 150, 489–493 (2014). https://doi.org/10.1016/J.FOODCHEM.2013.11.028

    Article  Google Scholar 

  26. Kadiroğlu, P.: FTIR spectroscopy for prediction of quality parameters and antimicrobial activity of commercial vinegars with chemometrics. J. Sci. Food Agric. 98, 4121–4127 (2018). https://doi.org/10.1002/jsfa.8929

    Article  Google Scholar 

  27. Nogales-Bueno, J., Baca-Bocanegra, B., Rooney, A., Miguel Hernández-Hierro, J., José Heredia, F., Byrne, H.J.: Linking ATR-FTIR and Raman features to phenolic extractability and other attributes in grape skin. Talanta 167, 44–50 (2017). https://doi.org/10.1016/J.TALANTA.2017.02.008

    Article  Google Scholar 

  28. Nogales-Bueno, J., Baca-Bocanegra, B., Rooney, A., Hernández-Hierro, J.M., Byrne, H.J., Heredia, F.J.: Study of phenolic extractability in grape seeds by means of ATR-FTIR and Raman spectroscopy. Food Chem. 232, 602–609 (2017). https://doi.org/10.1016/J.FOODCHEM.2017.04.049

    Article  Google Scholar 

  29. Altemimi, A., Watson, D.G., Choudhary, R., Dasari, M.R., Lightfoot, D.A.: Ultrasound assisted extraction of phenolic compounds from peaches and pumpkins. PLoS ONE 11, 1–20 (2016). https://doi.org/10.1371/journal.pone.0148758

    Article  Google Scholar 

  30. Lu, X., Wang, J., Al-Qadiri, H.M., Ross, C.F., Powers, J.R., Tang, J., Rasco, B.A.: Determination of total phenolic content and antioxidant capacity of onion (Allium cepa) and shallot (Allium oschaninii) using infrared spectroscopy. Food Chem. 129, 637–644 (2011). https://doi.org/10.1016/J.FOODCHEM.2011.04.105

    Article  Google Scholar 

  31. Agcam, E., Akyildiz, A., Evrendilek, G.A.: Comparison of phenolic compounds of orange juice processed by pulsed electric fields (PEF) and conventional thermal pasteurisation. Food Chem. (2014). https://doi.org/10.1016/j.foodchem.2013.07.115

    Article  Google Scholar 

  32. Damar, İ., Ekşi, A.: Antioxidant capacity and anthocyanin profile of sour cherry (Prunus cerasus L.) juice. Food Chem. 135, 2910–2914 (2012). https://doi.org/10.1016/j.foodchem.2012.07.032

    Article  Google Scholar 

  33. Blando, F., Gerardi, C., Nicoletti, I.: Sour cherry (Prunus cerasus L) anthocyanins as ingredients for functional foods. J. Biomed. Biotechnol. 5, 253–258 (2004)

    Article  Google Scholar 

  34. Huang, H.-W., Hsu, C.-P., Yang, B.B., Wang, C.-Y.: Advances in the extraction of natural ingredients by high pressure extraction technology. Trends Food Sci. Technol. 33, 54–62 (2013). https://doi.org/10.1016/J.TIFS.2013.07.001

    Article  Google Scholar 

  35. Jun, X., Shuo, Z., Bingbing, L., Rui, Z., Ye, L., Deji, S., Guofeng, Z.: Separation of major catechins from green tea by ultrahigh pressure extraction. Int. J. Pharm. 386, 229–231 (2010). https://doi.org/10.1016/J.IJPHARM.2009.10.035

    Article  Google Scholar 

  36. Pinela, J., Prieto, M.A., Barros, L., Carvalho, A.M., Oliveira, M.B.P.P., Saraiva, J.A., Ferreira, I.C.F.R.: Cold extraction of phenolic compounds from watercress by high hydrostatic pressure: Process modelling and optimization. Sep. Purif. Technol. 192, 501–512 (2018). https://doi.org/10.1016/J.SEPPUR.2017.10.007

    Article  Google Scholar 

  37. Prasad, K.N., Hao, J., Shi, J., Liu, T., Li, J., Wei, X., Qiu, S., Xue, S., Jiang, Y.: Antioxidant and anticancer activities of high pressure-assisted extract of longan (Dimocarpus longan Lour.) fruit pericarp. Innov. Food Sci. Emerg. Technol. 10, 413–419 (2009). https://doi.org/10.1016/j.ifset.2009.04.003

    Article  Google Scholar 

  38. He, B., Zhang, L.-L., Yue, X.-Y., Liang, J., Jiang, J., Gao, X.-L., Yue, P.-X.: Optimization of ultrasound-assisted extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium ashei) wine pomace. Food Chem. 204, 70–76 (2016). https://doi.org/10.1016/J.FOODCHEM.2016.02.094

    Article  Google Scholar 

  39. Corbin, C., Fidel, T., Leclerc, E.A., Barakzoy, E., Sagot, N., Falguiéres, A., Renouard, S., Blondeau, J.-P., Ferroud, C., Doussot, J., Lainé, E., Hano, C.: Development and validation of an efficient ultrasound assisted extraction of phenolic compounds from flax (Linum usitatissimum L.) seeds. Ultrason. Sonochem. 26, 176–185 (2015). https://doi.org/10.1016/j.ultsonch.2015.02.008

    Article  Google Scholar 

  40. Avhad, D.N., Rathod, V.K.: Ultrasound assisted production of a fibrinolytic enzyme in a bioreactor. Ultrason. Sonochem. 22, 257–264 (2015). https://doi.org/10.1016/J.ULTSONCH.2014.04.020

    Article  Google Scholar 

  41. Tao, Y., Wu, D., Zhang, Q.-A., Sun, D.-W.: Ultrasound-assisted extraction of phenolics from wine lees: modeling, optimization and stability of extracts during storage. Ultrason. Sonochem. 21, 706–715 (2014). https://doi.org/10.1016/J.ULTSONCH.2013.09.005

    Article  Google Scholar 

  42. Toma, M., Vinatoru, M., Paniwnyk, L., Mason, T.: Investigation of the effects of ultrasound on vegetal tissues during solvent extraction. Ultrason. Sonochem. 8, 137–142 (2001). https://doi.org/10.1016/S1350-4177(00)00033-X

    Article  Google Scholar 

  43. Samaram, S., Mirhosseini, H., Tan, C.P., Ghazali, H.M., Bordbar, S., Serjouie, A.: Optimisation of ultrasound-assisted extraction of oil from papaya seed by response surface methodology: oil recovery, radical scavenging antioxidant activity, and oxidation stability. Food Chem. 172, 7–17 (2015). https://doi.org/10.1016/J.FOODCHEM.2014.08.068

    Article  Google Scholar 

  44. Alighourchi, H.R., Barzegar, M., Sahari, M.A., Abbasi, S.: Effect of sonication on anthocyanins, total phenolic content, and antioxidant capacity of pomegranate juices. Int. Food Res. J. 20, 1703–1709 (2013)

    Google Scholar 

  45. Zhang, Z.-S., Wang, L.-J., Li, D., Jiao, S.-S., Chen, X.D., Mao, Z.-H.: Ultrasound-assisted extraction of oil from flaxseed. Sep. Purif. Technol. 62, 192–198 (2008). https://doi.org/10.1016/J.SEPPUR.2008.01.014

    Article  Google Scholar 

  46. Li, H., Pordesimo, L., Weiss, J.: High intensity ultrasound-assisted extraction of oil from soybeans. Food Res. Int. 37, 731–738 (2004). https://doi.org/10.1016/J.FOODRES.2004.02.016

    Article  Google Scholar 

  47. Li, H., Pordesimo, L., Weiss, J.: High intensity ultrasound-assisted extraction of oil from soybeans. Food Res. Int. 37, 731–738 (2004). https://doi.org/10.1016/J.FOODRES.2004.02.016

    Article  Google Scholar 

  48. Dahmoune, F., Spigno, G., Moussi, K., Remini, H., Cherbal, A., Madani, K.: Pistacia lentiscus leaves as a source of phenolic compounds : microwave-assisted extraction optimized and compared with ultrasound-assisted and conventional solvent extraction. Ind. Crop. Prod. 61, 31–40 (2014). https://doi.org/10.1016/j.indcrop.2014.06.035

    Article  Google Scholar 

  49. Ricci, A., Olejar, K.J., Parpinello, G.P., Kilmartin, P.A., Versari, A.: Application of fourier transform infrared (FTIR) spectroscopy in the characterization of tannins. Appl. Spectrosc. Rev. 50, 407–442 (2015). https://doi.org/10.1080/05704928.2014.1000461

    Article  Google Scholar 

  50. Levaj, B., Dragovi, V., Delonga, K., Kova, K.: Polyphenols and volatiles in fruits of two sour cherry cultivars, some berry fruits and their jams. Food Technol. Biotechnol. 48, 538–547 (2010)

    Google Scholar 

  51. Mitic, M.N., Obradovic, M.V., Kostic, D.A., Naskovi, D.Č., Micic, R.J.: Phenolics content and antioxidant capacity of commercial red fruit juices. Hem. Ind. 65, 611–619 (2011). https://doi.org/10.2298/HEMIND110418042M

    Article  Google Scholar 

  52. Simsek, M., Sumnu, G., Sahin, S.: Microwave assisted extraction of phenolic compounds from sour cherry pomace. Sep. Sci. Technol. 47, 1248–1254 (2012). https://doi.org/10.1080/01496395.2011.644616

    Article  Google Scholar 

  53. Kołodziejczyk, K., Sójka, M., Abadias, M., Vi, I., Guyot, S., Baron, A.: Polyphenol composition, antioxidant capacity, and antimicrobial activity of the extracts obtained from industrial sour cherry pomace. Ind. Crop. Prod. 51, 279–288 (2013). https://doi.org/10.1016/j.indcrop.2013.09.030

    Article  Google Scholar 

  54. Yılmaz, F.M., Karaaslan, M., Vardin, H.: Optimization of extraction parameters on the isolation of phenolic compounds from sour cherry (Prunus cerasus L.) pomace. J. Food Sci. Technol. 52, 2851–2859 (2015). https://doi.org/10.1007/s13197-014-1345-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cem Baltacıoğlu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okur, İ., Baltacıoğlu, C., Ağçam, E. et al. Evaluation of the Effect of Different Extraction Techniques on Sour Cherry Pomace Phenolic Content and Antioxidant Activity and Determination of Phenolic Compounds by FTIR and HPLC. Waste Biomass Valor 10, 3545–3555 (2019). https://doi.org/10.1007/s12649-019-00771-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00771-1

Keywords

Navigation