Skip to main content
Log in

Preparation of Porous Carbon Spheres Under Different Activation Conditions from 2-Keto-l-gulonic Acid Mother Liquor for Electric Double-Layer Capacitor

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

2-Keto-l-gulonic acid mother liquor (GAML) as an organic waste solution contained highly polluting contents would pollute the environment if discharged directly. As reported in our previous paper, GAML was used as the precursor to prepare porous carbon sphere (PCS) as carbon-based electrode materials of electric double-layer capacitor (EDLC) to create its high value-added utilization, and in the carbonization process, Fe(NO3)3·9H2O acted as an oxidizing agent. Since the carbon sphere was a carbon material with a special morphology, the effect of activation conditions (activation ratio, activation temperature and activation time) on the pore structure and the electrochemical performance of PCS were explored in this paper. PCS was derived via hydrothermal carbonization, carbonization and KOH activation successively, and the as-prepared samples had excellent porosity and high SSA of 2747 m2 g−1. Besides, the specific capacitance of PCS-7-700-1 could reach as high as 303.7 F g−1 (206.5 F cm−3) in 6 M KOH electrolyte at 40 mA g−1.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shi, Y., Zhang, M.H., Fang, C.C., Meng, Y.S.: Urea-based hydrothermal synthesis of LiNi0.5Co0.2Mn0.3O2 cathode material for Li-ion battery. J. Power Sources 394, 114–121 (2018)

    Google Scholar 

  2. Pol, V.G., Lee, E., Zhou, D., Dogan, F., Calderon-Moreno, J.M., Johnson, C.S.: Spherical carbon as a new high-rate anode for sodium-ion batteries. Electrochim. Acta 127, 61–67 (2014)

    Google Scholar 

  3. Zhao, X.Y., Huang, S.S., Cao, J.P., Wei, X.Y., Magarisawa, K., Takarada, T.: HyperCoal-derived porous carbons with alkaline hydroxides and carbonate activation for electric double-layer capacitors. Fuel Process. Technol. 125, 251–257 (2014)

    Google Scholar 

  4. Yan, P.T., Xu, J., Wu, C., Gu, Y., Zhang, X.S., Zhang, R.J., Song, Y.B.: High-power supercapacitors based on hierarchical porous nanometer-sized silicon carbide-derived carbon. Electrochim. Acta 189, 16–21 (2016)

    Google Scholar 

  5. Teng, S.A., Siegel, G., Wang, W., Tiwari, A.: Carbonized wood for supercapacitor electrodes. ECS Solid State Lett. 3, 25–28 (2014)

    Google Scholar 

  6. Li, X., Xing, W., Zhuo, S.P., Zhou, J., Li, F., Qiao, S.Z., Lu, G.Q.: Preparation of capacitor’s electrode from sunflower seed shell. Bioresour. Technol. 102, 1118–1123 (2011)

    Google Scholar 

  7. Li, Y.J., Wang, G.L., Wei, T., Fan, Z.J., Yan, P.: Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy 19, 165–175 (2016)

    Google Scholar 

  8. Miller, J.R., Outlaw, R.A., Holloway, B.C.: Graphene electric double layer capacitor with ultra-high-power performance. Electrochim. Acta 56, 10443–10449 (2011)

    Google Scholar 

  9. Roberts, A.D., Li, X., Zhang, H.F.: Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials. Chem. Soc. Rev. 43, 4341–4356 (2014)

    Google Scholar 

  10. Xu, B., Wu, F., Chen, S., Zhang, C.Z., Cao, G.P., Yang, Y.S.: Activated carbon fiber cloths as electrodes for high performance electric double layer capacitors. Electrochim. Acta 52, 4595–4598 (2007)

    Google Scholar 

  11. Liu, S.M., Cai, Y.J., Zhao, X., Liang, Y.R., Zheng, M.T., Hu, H., Dong, H.W., Jiang, S.P., Liu, Y.L., Xiao, Y.: Sulfur-doped nanoporous carbon spheres with ultrahigh specific surface area and high electrochemical activity for supercapacitor. J. Power Sources 360, 373–382 (2017)

    Google Scholar 

  12. Zhao, X.Y., Huang, S.S., Cao, J.P., Xi, S.C., Wei, X.Y., Kamamoto, J., Takarada, T.: KOH activation of HyperCoal to develop activated carbons for electric double-layer capacitors. J. Anal. Appl. Pyrol. 105, 116–121 (2014)

    Google Scholar 

  13. Saha, D., Li, Y.C., Bi, Z.H., Chen, J.H., Keum, J.K., Hensley, D.K., Grappe, H.A., Meyer, H.M., Dai, S., Paranthaman, M.P., Naskar, A.K.: Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon. Langmuir 30, 900–910 (2014)

    Google Scholar 

  14. Liou, T.H.: Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation. Chem. Eng. J. 158, 129–142 (2010)

    Google Scholar 

  15. Deng, H., Li, G.X., Yang, H.B., Tang, J.P., Tang, J.Y.: Preparation of activated carbons from cotton stalk by microwave assisted KOH and K2CO3 activation. Chem. Eng. J. 163, 373–381 (2010)

    Google Scholar 

  16. Hao, Z.Q., Cao, J.P., Zhao, X.Y., Wu, Y., Zhu, J.S., Dang, Y.L., Zhuang, Q.Q., Wei, X.Y.: Preparation of porous carbon spheres from 2-keto-l-gulonic acid mother liquor by oxidation and activation for electric double-layer capacitor application. J. Colloid Interface Sci. 513, 20–27 (2018)

    Google Scholar 

  17. Hao, Z.Q., Cao, J.P., Dang, Y.L., Wu, Y., Zhao, X.Y., Wei, X.Y.: Three-dimensional hierarchical porous carbon with high oxygen content derived from organic waste liquid with superior electric double layer performance. ACS Sustain. Chem. Eng. 7, 4037–4046 (2019)

    Google Scholar 

  18. Cui, F.X., Wang, J.C., Ren, B.L.: Liquor recovery process for vitamin C. Mod. Chem. Ind. 34, 67–72 (2014)

    Google Scholar 

  19. Hao, Z.Q., Cao, J.P., Wu, Y., Zhao, X.Y., Zhou, L., Fan, X., Zhao, Y.P., Wei, X.Y.: Preparation of porous carbons from waste sugar residue for high performance electric double-layer capacitor. Fuel Process. Technol. 162, 45–54 (2017)

    Google Scholar 

  20. Zhao, J.C., Tang, B.H.J., Cao, J., Feng, J.C., Liu, P., Zhao, J., Xu, J.L.: Effect of hydrothermal temperature on the structure and electrochemical performance of manganese compound/ordered mesoporous carbon composites for supercapacitors. Mater. Manuf. Process. 27, 119–124 (2012)

    Google Scholar 

  21. Liang, C.D., Li, Z.J., Dai, S.: Mesoporous carbon materials: synthesis and modification. Angew. Chem. Int. Ed. 47, 3696–3717 (2008)

    Google Scholar 

  22. Murashko, K., Nevstrueva, D., Pihlajamäki, A., Koiranen, T., Pyrhönen, J.: Cellulose and activated carbon based flexible electrical double-layer capacitor electrode: preparation and characterization. Energy 119, 435–441 (2017)

    Google Scholar 

  23. Chmiola, J., Yushin, G., Dash, R., Gogotsi, Y.: Effect of pore size and surface area of carbide derived carbons on specific capacitance. J. Power Sources 158, 765–772 (2006)

    Google Scholar 

  24. Hao, Z.Q., Cao, J.P., Wu, Y., Zhao, X.Y., Zhuang, Q.Q., Wang, X.Y., Wei, X.Y.: Preparation of porous carbon sphere from waste sugar solution for electric double-layer capacitor. J. Power Sources 361, 249–258 (2017)

    Google Scholar 

  25. Wu, Y., Cao, J.P., Zhao, X.Y., Hao, Z.Q., Zhuang, Q.Q., Zhu, J.S., Wang, X.Y., Wei, X.Y.: Preparation of porous carbons by hydrothermal carbonization and KOH activation of lignite and their performance for electric double layer capacitor. Electrochim. Acta 252, 397–407 (2017)

    Google Scholar 

  26. Hirai, Y., Okada, K., Kurokawa, R., Matsumoto, S., Sato, Y.: Electrical property of EDLC and electrochemical interaction between separator and electrolyte. JICEE 6, 72–77 (2016)

    Google Scholar 

  27. Liu, M.C., Kong, L.B., Lu, C., Li, X.M., Luo, Y.C., Kang, L.: Waste paper based activated carbon monolith as electrode materials for high performance electric double-layer capacitors. RSC Adv. 2, 1890–1896 (2012)

    Google Scholar 

  28. Ramirez-Castro, C., Schütter, C., Passerini, S., Balducci, A.: Microporous carbonaceous materials prepared from biowaste for supercapacitor application. Electrochim. Acta 206, 452–457 (2016)

    Google Scholar 

  29. Chang, B.B., Guo, Y.Z., Li, Y.C., Yin, H., Zhang, S.R., Yang, B.C., Dong, X.P.: Graphitized hierarchical porous carbon nanospheres: simultaneous activation/graphitization and superior supercapacitance performance. J. Mater. Chem. A 3, 9565–9577 (2015)

    Google Scholar 

  30. Chen, Y., Zhang, X., Zhang, D.C., Yu, P., Ma, Y.W.: High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes. Carbon 49, 573–580 (2011)

    Google Scholar 

  31. Shimada, T., Hata, T., Kijima, M.: Thermal conversion of lignin–cellulose composite particles into aggregates of fine carbon grains holding micro- and mesoporous spaces. ACS Sustain. Chem. Eng. 3, 1690–1695 (2015)

    Google Scholar 

  32. Li, W., Yang, K.B., Peng, J.H., Zhang, L.B., Guo, S.H., Xia, H.Y.: Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars. Ind. Crop. Prod. 28, 190–198 (2008)

    Google Scholar 

  33. Zhu, Y.W., Murali, S., Stoller, M.D., Ganesh, K.J., Cai, W.W., Ferreira, P.J., Pirkle, A., Wallace, R.M., Cychosz, K.A., Thommes, M., Su, D., Stach, E.A., Ruoff, R.S.: Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537–1541 (2011)

    Google Scholar 

  34. Kaneko, K., Ishii, C., Ruike, M., Kuwabara, H.: Origin of superhigh surface area and microcrystalline graphitic structures of activated carbons. Carbon 30, 1075–1088 (1992)

    Google Scholar 

  35. Sarkisov, L.: Accessible surface area of porous materials: understanding theoretical limits. Adv. Mater. 24, 3130–3133 (2012)

    Google Scholar 

  36. Yang, J., Wu, H.L., Zhu, M., Ren, W.J., Lin, Y., Chen, H.B., Pan, F.: Optimized mesopores enabling enhanced rate performance in novel ultrahigh surface area meso-/microporous carbon for supercapacitors. Nano Energy 33, 453–461 (2017)

    Google Scholar 

  37. Zhu, T.T., Zhou, J., Li, Z.H., Li, S.J., Si, W.J., Zhuo, S.P.: Hierarchical porous and N-doped carbon nanotubes derived from polyaniline for electrode materials in supercapacitors. J. Mater. Chem. A 2, 12545–12551 (2014)

    Google Scholar 

  38. Ishida, Y., Chabanne, L., Antonietti, M., Shalom, M.: Morphology control and photocatalysis enhancement by the one-pot synthesis of carbon nitride from preorganized hydrogen-bonded supramolecular precursors. Langmuir 30, 447–451 (2014)

    Google Scholar 

  39. Wang, K.L., Xu, M., Gu, Y., Gu, Z.R., Fan, Q.H.: Symmetric supercapacitors using urea-modified lignin derived N-doped porous carbon as electrode materials in liquid and solid electrolytes. J. Power Sources 332, 180–186 (2016)

    Google Scholar 

  40. Peng, C., Yan, X.B., Wang, R.T., Lang, J.W., Ou, Y.J., Xue, Q.J.: Promising activated carbons derived from waste tea-leaves and their application in high performance supercapacitors electrodes. Electrochim. Acta 87, 401–408 (2013)

    Google Scholar 

  41. Zhang, C.X., Long, D.H., Xing, B.L., Qiao, W.M., Zhang, R., Zhan, L., Liang, X.Y., Ling, L.C.: The superior electrochemical performance of oxygen-rich activated carbons prepared from bituminous coal. Electrochem. Commun. 10, 1809–1811 (2008)

    Google Scholar 

  42. Milczarek, G., Ciszewski, A., Stepniak, I.: Oxygen-doped activated carbon fiber cloth as electrode material for electrochemical capacitor. J. Power Sources 196, 7882–7885 (2011)

    Google Scholar 

  43. Naveen, M.H., Shim, K., Hossain, M.S.A., Kim, J.H., Shim, Y.B.: Template free preparation of heteroatoms doped carbon spheres with trace Fe for efficient oxygen reduction reaction and supercapacitor. Adv. Energy Mater. 7, 1602002 (2017)

    Google Scholar 

  44. Huang, T.F., Zhao, C.H., Wu, L.H., Lang, X.L., Liu, K.Y., Hu, Z.B.: 3D network-like porous MnCo2O4 by the sucrose-assisted combustion method for high-performance supercapacitors. Ceram. Int. 43, 1968–1974 (2017)

    Google Scholar 

  45. He, X.J., Liu, Z.D., Ma, H., Zhang, N., Yu, M.X., Wu, M.B.: Shell-like hierarchical porous carbons for high-rate performance supercapacitors. Microporous Mesoporous Mater. 236, 134–140 (2016)

    Google Scholar 

  46. He, X.J., Ling, P.H., Yu, M.X., Wang, X.T., Zhang, X.Y., Zheng, M.D.: Rice husk-derived porous carbons with high capacitance by ZnCl2 activation for supercapacitors. Electrochim. Acta 105, 635–641 (2013)

    Google Scholar 

  47. Portet, C., Taberna, P.L., Simon, P., Laberty-Robert, C.: Modification of Al current collector surface by sol-gel deposit for carbon-carbon supercapacitor applications. Electrochim. Acta 49, 905–912 (2004)

    Google Scholar 

  48. Vijayakumar, S., Nagamuthu, S., Muralidharan, G.: Porous NiO/C nanocomposites as electrode material for electrochemical supercapacitors. ACS Sustain. Chem. Eng. 1, 1110–1118 (2013)

    Google Scholar 

  49. De Levie, R.: On porous electrodes in electrolyte solutions. Electrochim. Acta 8, 751–780 (1963)

    Google Scholar 

  50. Masarapu, C., Zeng, H.F., Hung, K.H., Wei, B.Q.: Effect of temperature on the capacitance of carbon nanotube supercapacitors. ACS Nano 3, 2199–2206 (2009)

    Google Scholar 

  51. Zhang, X.Y., Wang, X.Y., Jiang, L.L., Wu, H., Wu, C., Su, J.C.: Effect of aqueous electrolytes on the electrochemical behaviors of supercapacitors based on hierarchically porous carbons. J. Power Sources 216, 290–296 (2012)

    Google Scholar 

  52. Taberna, P.L., Simon, P., Fauvarque, J.F.: Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J. Electrochem. Soc. 150, A292–A300 (2003)

    Google Scholar 

  53. Huang, W.T., Zhang, H., Huang, Y.Q., Wang, W.K., Wei, S.C.: Hierarchical porous carbon obtained from animal bone and evaluation in electric double-layer capacitors. Carbon 49, 838–843 (2011)

    Google Scholar 

  54. Bhattacharjya, D., Yu, J.S.: Activated carbon made from cow dung as electrode material for electrochemical double layer capacitor. J. Power Sources 262, 224–231 (2014)

    Google Scholar 

  55. Gao, S.Y., Li, L.Y., Geng, K.R., Wei, X.J., Zhang, S.X.: Recycling the biowaste to produce nitrogen and sulfur self-doped porous carbon as an efficient catalyst for oxygen reduction reaction. Nano Energy 16, 408–418 (2015)

    Google Scholar 

  56. Fu, G.S., Li, Q., Ye, J.L., Han, J.J., Wang, J.Q., Zhai, L., Zhu, Y.W.: Hierarchical porous carbon with high nitrogen content derived from plant waste (pomelo peel) for supercapacitor. J. Mater. Sci. 29, 7707–7717 (2018)

    Google Scholar 

  57. Ma, G.F., Yang, Q., Sun, K.J., Peng, H., Ran, F.T., Zhao, X.L., Lei, Z.Q.: Nitrogen-doped porous carbon derived from biomass waste for high-performance supercapacitor. Bioresour. Technol. 197, 137–142 (2015)

    Google Scholar 

  58. Redondo, E., Carretero-González, J., Goikolea, E., Julie Ségalini, J., Mysyk, R.: Effect of pore texture on performance of activated carbon supercapacitor electrodes derived from olive pits. Electrochim. Acta 160, 178–184 (2015)

    Google Scholar 

  59. Raymundo-Piñero, E., Cadek, M., Béguin, F.: Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds. Adv. Funct. Mater. 19, 1032–1039 (2009)

    Google Scholar 

  60. Wang, K., Zhao, N., Lei, S.W., Yan, R., Tian, X.D., Wang, J.Z., Song, Y., Xu, D.F., Guo, Q.G., Liu, L.: Promising biomass-based activated carbons derived from willow catkins for high performance supercapacitors. Electrochim. Acta 166, 1–11 (2015)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (Grant No. 2017CXNL04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Pei Cao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, YL., Cao, JP., Hao, ZQ. et al. Preparation of Porous Carbon Spheres Under Different Activation Conditions from 2-Keto-l-gulonic Acid Mother Liquor for Electric Double-Layer Capacitor. Waste Biomass Valor 11, 4429–4440 (2020). https://doi.org/10.1007/s12649-019-00734-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00734-6

Keywords

Navigation