Skip to main content
Log in

Oil and Aromatic Yield Maximization During Pyrolysis of Scrap Tire Rubber

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Here, we report the optimization of scrap tire rubber (STR) pyrolysis in a fixed-bed reactor for the production of pyrolytic oil (py-oil). Special attention was focused on determining the effects of the temperature and gas residence time on the py-oil and aromatic yields, as well as the optimal range of operating conditions for their maximization. For that purpose, an experimental 4 × 3 factorial design was applied. The maximum py-oil yield obtained was 42.6 mass% at high temperatures and short gas residence times (560–600 °C and 10–18 s, respectively). In contrast, the maximum aromatic concentration (25.6 mass%) was obtained at moderate operating conditions (450–500 °C and 18–20 s). The analysis of variance revealed that the temperature is the most statistically significant variable in py-oil production while, for the nitrogen volumetric flow, only a combined effect with the temperature was observed. In contrast, in terms of the aromatic yield, both the temperature and gas volumetric flow were found to be statistically significant variables. The models provided determination coefficients (R2) close to 0.90, indicating good precision in the predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Leung, D.Y.C., Yin, X.L., Zhao, Z.L., Xu, B.Y., Chen, Y.: Pyrolysis of tire powder: influence of operation variables on the composition and yields of gaseous product. Fuel Process. Technol. 79, 141–155 (2002)

    Article  Google Scholar 

  2. Puy, N., Martı, J.D., Navarro, V., Mastral, A.M.: Waste tyre pyrolysis–A review. Renew. Sustain. Energy Rev. 23, 179–213 (2013)

    Article  Google Scholar 

  3. Alkhatib, R., Loubar, K., Awad, S., Mounif, E.: Effect of heating power on the scrap tires pyrolysis derived oil. J. Anal. Appl. Pyrolysis 116, 10–17 (2015)

    Article  Google Scholar 

  4. Lah, B., Klinar, D., Likozar, B.: Pyrolysis of natural, butadiene, styrene – butadiene rubber and tyre components: modelling kinetics and transport phenomena at different heating rates and formulations. Chem. Eng. Sci. 87, 1–13 (2013)

    Article  Google Scholar 

  5. Edwin Raj, R., Robert Kennedy, Z., Pillai, B.C.: Optimization of process parameters in flash pyrolysis of waste tyres to liquid and gaseous fuel in a fluidized bed reactor. Energy Convers. Manage. 67, 145–151 (2013). https://doi.org/10.1016/j.enconman.2012.11.012

    Article  Google Scholar 

  6. Pinto, F., Paradela, F., Gulyurtlu, I., Maria, A.: Prediction of liquid yields from the pyrolysis of waste mixtures using response surface methodology. Fuel Process. Technol. 116, 271–283 (2013)

    Article  Google Scholar 

  7. Acosta, R., Tavera, C., Gauthier-Maradei, P., Nabarlatz, D.: Production of oil and char by intermediate pyrolysis of scrap tyres: influence on yield and product characteristics. Int. J. Chem. React. Eng. 13, 189–200 (2015). https://doi.org/10.1515/ijcre-2014-0137

    Article  Google Scholar 

  8. Mastral, A.M., Murillo, R., Callen, M.S., Garcia, T.: Optimisation of scrap automotive tyres recycling into valuable liquid fuels. Resour. Conserv. Recycl. 29, 263–272 (2000)

    Article  Google Scholar 

  9. Mkhize, N.M., Danon, B., van der Gryp, P., Gorgens, J.F.: Condensation of the hot volatiles from waste tyre pyrolysis by quenching. J. Anal. Appl. Pyrolysis 124, 180–185 (2017)

    Article  Google Scholar 

  10. Islam, M.R., Parveen, M., Haniu, H., Sarker, M.R.I.: Innovation in pyrolysis technology for management of scrap tire: a solution of energy and environment. Int. J. Environ. Sci. Dev. 1, 89–96 (2010)

    Article  Google Scholar 

  11. Fernández, A.M., Barriocanal, C., Alvarez, R.: Pyrolysis of a waste from the grinding of scrap tyres. J. Hazard. Mater. 204, 236–243 (2012). https://doi.org/10.1016/j.jhazmat.2011.12.014

    Article  Google Scholar 

  12. González, J.F., Encinar, J.M., Canito, J.L., Rodríguez, J.J.: Pyrolysis of automobile tyre waste. Influence of operating variables and kinetics study. J. Anal. Appl. Pyrolysis 58, 667–683 (2001). https://doi.org/10.1016/S0165-2370(00)00201-1

    Article  Google Scholar 

  13. Martínez, J.D., Puy, N., Murillo, R., García, T., Navarro, M.V., Mastral, A.M.: Waste tyre pyrolysis—A review. Renew. Sustain. Energy Rev. 23, 179–213 (2013). https://doi.org/10.1016/j.rser.2013.02.038

    Article  Google Scholar 

  14. Islam, M.R., Haniu, H., Beg, M.R.: Liquid fuels and chemicals from pyrolysis of motorcycle tire waste: product yields, compositions and related properties. Fuel 87, 3112–3122 (2008). https://doi.org/10.1016/j.fuel.2008.04.036

    Article  Google Scholar 

  15. Nkosi, N., Muzenda, E.: A review and discussion of waste tyre pyrolysis and derived products. Proc. World Congr. En Eng. 2014, 417 (2014)

    Google Scholar 

  16. Kyari, M., Cunliffe, A., Williams, P.T.: Characterization of oils, gases, and char in relation to the pyrolysis of different brands of scrap automotive tires. Energy Fuels 19, 1165–1173 (2005). https://doi.org/10.1021/ef049686x

    Article  Google Scholar 

  17. Mohammad, A., Inamuddin, D.: Chapter 5. Limonene as green solvent for extraction of natural products. In: Springer Science & Business Media (ed.) Green Solvents I: Properties and Applications in Chemistry, p. 176. Springer, Dordrecht (2012)

    Google Scholar 

  18. Kerton, F.M.: Chapter 5 Renewable solvents. In: Royal Society of Chemistry (ed.) Alternative solvents for green chemistry, pp. 97–166. Royal Society of Chemistry, London (2009)

    Google Scholar 

  19. Pakdel, H., Coulombet, S., Laval, U., Energetique, D.: Formation of dl-limonene in used tire vacuum pyrolysis oils. Environ. Sci. Technol. 25, 1646–1649 (1991)

    Article  Google Scholar 

  20. Cunliffe, A.M., Williams, P.T.: Composition of oils derived from the batch pyrolysis of tyres. J. Anal. Appl. Pyrolysis 44, 131–152 (1998). https://doi.org/10.1016/S0165-2370(97)00085-5

    Article  Google Scholar 

  21. Williams, P.T., Bottrill, P.: Sulfur-polycyclic tyre pyrolysis oil. Fuel 74, 736–742 (1995)

    Article  Google Scholar 

  22. Amari, T., Themelis, N.J., Wernick, I.K.: Resource recovery from used rubber tires. Resour. Policy 25, 179–188 (1999)

    Article  Google Scholar 

  23. Williams, P.T., Besler, S.: The Influence of temperature and heating rate on the slow pyrolysis of biomass. Fuel 1481, 6–7 (1996)

    Google Scholar 

  24. Williams, P.T., Brindle, A.J.: Aromatic chemicals from the catalytic pyrolysis of scrap tyres. J. Anal. Appl. Pyrolysis 67, 143–164 (2003). https://doi.org/10.1016/S0165-2370(02)00059-1

    Article  Google Scholar 

  25. Arabiourrutia, M., Lopez, G., Elordi, G., Olazar, M., Aguado, R., Bilbao, J.: Product distribution obtained in the pyrolysis of tyres in a conical spouted bed reactor. Chem. Eng. Sci. 62, 5271–5275 (2007). https://doi.org/10.1016/j.ces.2006.12.026

    Article  Google Scholar 

  26. Laresgoiti, M.F., Caballero, B.M., De Marco, I., Torres, A., Cabrero, M.A., Chomón, M.J.: Characterization of the liquid products obtained in tyre pyrolysis. J. Anal. Appl. Pyrolysis 71, 917–934 (2004). https://doi.org/10.1016/j.jaap.2003.12.003

    Article  Google Scholar 

  27. Vecino, S., Gauthier-maradei, P., Gil, P.Á., Cárdenas, S.T.: Comparative study of bio-oil production from sugarcane bagasse and palm empty fruit bunch: yield optimization and bio-oil characterization. J. Anal. Appl. Pyrolysis 108, 284–294 (2014)

    Article  Google Scholar 

  28. Ucar, S., Karagoz, S., Ozkan, A.R., Yanik, J.: Evaluation of two different scrap tires as hydrocarbon source by pyrolysis. Fuel 84, 1884–1892 (2005). https://doi.org/10.1016/j.fuel.2005.04.002

    Article  Google Scholar 

  29. Williams, P.T.: Pyrolysis of waste tyres: a review. Waste Manage. 33, 1714–1728 (2013). https://doi.org/10.1016/j.wasman.2013.05.003

    Article  Google Scholar 

  30. Katritzky, A.R., Ignatchenko, E.S., Barcock, R.A., Lobanov, V.S.: Prediction of gas chromatographic retention times and response factors using a general quantitative structure-property relationship treatment. Anal. Chem. 6, 1799–1807 (1994)

    Article  Google Scholar 

  31. Scanlon, J.T., Willis, D.E.: Calculation of flame ionization detector relative response factors using the effective carbon number concept. J. Chromatogr. Sci. 23, 333–340 (1985)

    Article  Google Scholar 

  32. Berrueco, C., Esperanza, E., Mastral, F.J., Ceamanos, J., García-Bacaicoa, P.: Pyrolysis of waste tyres in an atmospheric static-bed batch reactor: analysis of the gases obtained. J. Anal. Appl. Pyrolysis 74, 245–253 (2005). https://doi.org/10.1016/j.jaap.2004.10.007

    Article  Google Scholar 

  33. Conesa, J.A., Martín-Gullón, I., Font, R., Jauhiainen, J.: Complete study of the pyrolysis and gasification of scrap tires in a pilot plant reactor. Environ. Sci. Technol. 38, 3189–3194 (2004). https://doi.org/10.1021/es034608u

    Article  Google Scholar 

  34. Gauthier-Maradei, P., Cely Valderrama, Y., Nabarlatz, D.: Mathematical model of scrap tire rubber pyrolysis in a non-isothermal fixed bed reactor: definition of a chemical mechanism and determination of kinetic parameters. Waste Biomass Valoriz. 2, 256 (2017). https://doi.org/10.1007/s12649-017-0079-7

    Article  Google Scholar 

  35. Danon, B., Van Der Gryp, P., Schwarz, C.E., Görgens, J.F.: A review of dipentene (dl-limonene) production from waste tire pyrolysis. J. Anal. Appl. Pyrolysis 112, 1–13 (2015). https://doi.org/10.1016/j.jaap.2014.12.025

    Article  Google Scholar 

  36. Lopez, G., Olazar, M., Amutio, M., Aguado, R., Bilbao, J.: Influence of tire formulation on the products of continuous pyrolysis in a conical spouted bed reactor in a conical spouted bed reactor. Energy Fuels (2009). https://doi.org/10.1021/ef900582k

    Article  Google Scholar 

  37. Martín-Luengo, M.A., Yates, M., Martínez Domingo, M.J., Casal, B., Iglesias, M., Esteban, M., Ruiz-Hitzky, E.: Synthesis of p-cymene from limonene, a renewable feedstock. Appl. Catal. B Environ. 81, 218–224 (2008). https://doi.org/10.1016/j.apcatb.2007.12.003

    Article  Google Scholar 

  38. Quek, A., Balasubramanian, R.: Liquefaction of waste tires by pyrolysis for oil and chemicals—A review. J. Anal. Appl. Pyrolysis 101, 1–16 (2013). https://doi.org/10.1016/j.jaap.2013.02.016

    Article  Google Scholar 

  39. Williams, P.T., Taylor, D.T.: Aromatization of tyre pyrolysis oil to yield polycyclic aromatic hydrocarbons. Fuel 72, 1469–1474 (1993). https://doi.org/10.1016/0016-2361(93)90002-J

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Vicerrectoría de Investigación y Extensión from Universidad Industrial de Santander (projects No. 1843 and 9370). Tavera Ruiz gratefully acknowledges Colciencias for the Ph.D. scholarship and Universidad Industrial de Santander for financial support through the doctoral program (project No. 1858). An especial thanks is given to the technical staff of the laboratories of the Chemical Engineering School of the Universidad Industrial de Santander for their technical support during the characterization analyses. The authors are also grateful to Yenny Sánchez and Diego Villamizar for their help to carry out the experimental tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Gauthier-Maradei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gauthier-Maradei, P., Tavera Ruiz, C.P. & Capron, M. Oil and Aromatic Yield Maximization During Pyrolysis of Scrap Tire Rubber. Waste Biomass Valor 10, 3723–3733 (2019). https://doi.org/10.1007/s12649-019-00695-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00695-w

Keywords

Navigation