Skip to main content

Advertisement

Log in

Plasma-Aided Reforming of Toluene and Isopropanol with Analysis of Decomposition Mechanism

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This paper presents experimental methods, conditions and results of plasma-aided reforming of isopropanol and toluene in water steam atmosphere. The liquid feedstock is added to nitrogen gas by a syringe pump and fed into a drop tube reactor, passing through a fluctuating non-thermal plasma zone. A comparison between plasma and thermal reforming is conducted at similar test conditions, achieving similar gas temperatures in the reactor. In the plasma case, an energy input of about 1 kW is introduced into the reaction through a gliding arc, non-thermal plasma, while in the thermal case the energy is thermally fed through a steam superheater. The measured syngas production shows a significant plasma enhancement on individual syngas components (e.g. H2, CO, CH4) using toluene. Furthermore, the reaction degree is calculated from the syngas-based carbon and hydrogen balance. Using isopropanol as feedstock, plasma increases the syngas-based carbon conversion from 35.5 to 50.2% and the hydrogen release from 47.3 to 70.1%. In the case of aromatic feedstock such as toluene, a carbon conversion from 1.2 to 9.2% and a rise of the hydrogen release from 2.1 to 29.8% is achieved. Based on hydrogen release, the reaction kinetics obtained through data-fitting in a first-order Arrhenius diagram, are accelerated from 0.43 to 0.81 s−1 and from 0.01 to 0.24 s−1 for plasma-assisted isopropanol and toluene reforming, respectively. An analysis of condensate from syngas shows that the decomposition products of toluene reforming include benzene, indene, naphthalene etc.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A:

Pre-exponential factor

CGE:

Cold gas efficiency

ddroplet :

Diameter of a droplet

EA :

Activation energy

F-T:

Fischer–Tropsch

k :

Reaction rate coefficient

L/G:

Volumetric liquid-gas-ratio

LHV:

Lower heating value

\({\dot{m}}_{C,{\text{CO}}}\) :

Carbon mass flow of carbon monoxide

\({\dot {m}_{C,{\text{C}}{{\text{O}}_2}}}\) :

Carbon mass flow of carbon dioxide

\({\dot {m}_{C,{\rm CH}_{4}}}\) :

Carbon mass flow of methane

\({\dot {m}_{C,fuel}}\) :

Carbon mass flow of feedstock

\({\dot {m}_{H,fuel}}\) :

Hydrogen mass flow of feedstock

\({\dot {m}_{H,{\rm H}_{2}}}\) :

Hydrogen mass flow of hydrogen

\({\dot {m}_{H,{\rm CH}_{4}}}\) :

Hydrogen mass flow of methane

\({\dot {m}_{H,plasma}}\) :

Hydrogen mass flow by only plasma ignition

NTP:

Non-thermal plasma

PAH:

Polycyclic aromatic hydrocarbon

Pheater :

Electrical power of heater

Pplasma :

Electrical power of plasma

ppm:

Parts per million

r:

Reaction rate

R:

Universal gas constant

SER:

Specific energy requirement

Syngas:

Synthesis gas

T:

Temperature

u v :

Relative velocity of liquid and gas phases

VOC:

Volatile organic compound

X C :

Syngas-based carbon conversion

Y H :

Syngas-based hydrogen release

σ :

Surface tension of liquid

ρ l :

Density of liquid

η l :

Dynamic viscosity of liquid

References

  1. Pemen, A.J.M., Nair, S.A., Yan, K., Van Heesch, E.J.M., Ptasinski, K.J., Drinkenburg, A.A.H.: Pulsed corona discharges for tar removal from biomass derived fuel gas. Plasmas Polym. 8(3), 209–224 (2003)

    Google Scholar 

  2. Nair, S.A., et al.: A high-temperature pulsed corona plasma system for fuel gas cleaning. J. Electrostat. 61(2), 117–127 (2004)

    MathSciNet  Google Scholar 

  3. Han, J., Kim, H.: The reduction and control technology of tar during biomass gasification/pyrolysis: an overview. Renew. Sustain. Energy Rev. 12(2), 397–416 (2008)

    Google Scholar 

  4. Eliott, R.M., Nogueira, M.F.M., Silva Sobrinho, A.S., Couto, B.A.P., Maciel, H.S., Lacava, P.T.: Tar reforming under a microwave plasma torch. Energy Fuels 27(2), 1174–1181 (2013)

    Google Scholar 

  5. De, S., Agarwal, A.K., Moholkar, V.S., Thallada, B. (eds.): Coal and Biomass Gasification. Springer, Singapore (2018)

    Google Scholar 

  6. Anis, S., Zainal, Z.A.: Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: a review. Renew. Sustain. Energy Rev. 15(5), 2355–2377 (2011)

    Google Scholar 

  7. El-Rub, Z.A., Bramer, E.A., Brem, G.: Experimental comparison of biomass chars with other catalysts for tar reduction. Fuel 87(10–11), 2243–2252 (2008)

    Google Scholar 

  8. Phuphuakrat, T., Namioka, T., Yoshikawa, K.: Tar removal from biomass pyrolysis gas in two-step function of decomposition and adsorption. Appl. Energy 87(7), 2203–2211 (2010)

    Google Scholar 

  9. Ahrenfeldt, J., Egsgaard, H., Stelte, W., Thomsen, T., Henriksen, U.B.: The influence of partial oxidation mechanisms on tar destruction in TwoStage biomass gasification. Fuel 112, 662–680 (2013)

    Google Scholar 

  10. Meng, X., De Jong, W., Fu, N., Verkooijen, A.H.M.: Biomass gasification in a 100 kWth steam-oxygen blown circulating fluidized bed gasifier: effects of operational conditions on product gas distribution and tar formation. Biomass Bioenerg. 35(7), 2910–2924 (2011)

    Google Scholar 

  11. Ferella, F., Stoehr, J., De Michelis, I., Hornung, A.: Zirconia and alumina based catalysts for steam reforming of naphthalene. Fuel 105, 614–629 (2013)

    Google Scholar 

  12. Huang, J., Schmidt, K.G., Bian, Z.: Removal and conversion of tar in syngas from woody biomass gasification for power utilization using catalytic hydrocracking. Energies 4(8), 1163–1177 (2011)

    Google Scholar 

  13. Wang, W., Chiang, L.-W., Ku, Y.: Decomposition of benzene in air streams by UV/TiO2 process. J. Hazard. Mater. 101(2), 133–146 (2003)

    Google Scholar 

  14. Tao, J., Zhao, L., Dong, C., Lu, Q., Du, X., Dahlquist, E.: Catalytic steam reforming of toluene as a model compound of biomass gasification tar using Ni–CeO2/SBA-15 catalysts. Energies 6(7), 3284–3296 (2013)

    Google Scholar 

  15. Yu, L., Li, X., Tu, X., Wang, Y., Lu, S., Yan, J.: Decomposition of naphthalene by dc gliding arc gas discharge. J. Phys. Chem. A 114(1), 360–368 (2009)

    Google Scholar 

  16. Wang, L.K., Hung, Y.-T., Shammas, N.K.: Advanced Physicochemical Treatment Technologies. Humana Press, New York (2007)

    Google Scholar 

  17. Nunnally, T., Tsangaris, A., Rabinovich, A., Nirenberg, G., Chernets, I., Fridman, A.: Gliding arc plasma oxidative steam reforming of a simulated syngas containing naphthalene and toluene. Int. J. Hydrogen Energy 39(23), 11976–11989 (2014)

    Google Scholar 

  18. Pawelec, A., Witman-Zając, S., Molenda, A.: Comparison of selected plasma technologies (Online). http://www.plastep.eu/fileadmin/dateien/Outputs/Comparison_of_selected_plasma_technologies.pdf. Accessed 29 Jun 2018

  19. Nair, S.A., et al.: Tar removal from biomass-derived fuel gas by pulsed corona discharges. Fuel Process. Technol. 84(1–3), 161–173 (2003)

    Google Scholar 

  20. Ostapczuk, A., Hakoda, T., Shimada, A., Kojima, T.: Naphthalene and acenaphthene decomposition by electron beam generated plasma application. Plasma Chem. Plasma Process. 28(4), 483 (2008)

    Google Scholar 

  21. Du, C.M., et al.: Simultaneous removal of polycyclic aromatic hydrocarbons and soot particles from flue gas by gliding arc discharge treatment. Plasma Chem. Plasma Process. 26(5), 517–525 (2006)

    Google Scholar 

  22. Ma, J., et al.: Hydropyrolysis of n-hexane and toluene to acetylene in rotating-arc plasma. Energies 10(7), 899 (2017)

    Google Scholar 

  23. Bo, Z., Yan, J.H., Li, X.D., Chi, Y., Cen, K.F., Chéron, B.G.: Effects of oxygen and water vapor on volatile organic compounds decomposition using gliding arc gas discharge. Plasma Chem. Plasma Process. 27(5), 546–558 (2007)

    Google Scholar 

  24. Futamura, S., Gurusamy, A.: Plasma reforming of aliphatic hydrocarbons with CO2. In: Conference Record of the 2004 IEEE Industry Applications Conference 39th IAS Annual Meeting, vol. 1 (2004)

  25. Lee, D.H., Kim, K.-T., Cha, M.S., Song, Y.-H.: Effect of excess oxygen in plasma reforming of diesel fuel. Int. J. Hydrogen Energy 35(10), 4668–4675 (2010)

    Google Scholar 

  26. Lee, D.H., Kim, K.-T., Cha, M.S., Song, Y.-H.: Plasma-controlled chemistry in plasma reforming of methane. Int. J. Hydrogen Energy 35(20), 10967–10976 (2010)

    Google Scholar 

  27. Tao, X., et al.: CH4–CO2 reforming by plasma—challenges and opportunities. Prog. Energy Combust. Sci. 37(2), 113–124 (2011)

    Google Scholar 

  28. Delagrange, S., Pinard, L., Tatibouët, J.-M.: Combination of a non-thermal plasma and a catalyst for toluene removal from air: Manganese based oxide catalysts. Appl. Catal. B Environ. 68(3–4), 92–98 (2006)

    Google Scholar 

  29. Van Durme, J., Dewulf, J., Sysmans, W., Leys, C., Van Langenhove, H.: Efficient toluene abatement in indoor air by a plasma catalytic hybrid system. Appl. Catal. B 74(1–2), 161–169 (2007)

    Google Scholar 

  30. Kang, M., et al.: Decomposition of toluene using an atmospheric pressure plasma/TiO2 catalytic system. J. Mol. Catal. A 180(1–2), 125–132 (2002)

    Google Scholar 

  31. Yu, L., Tu, X., Li, X., Wang, Y., Chi, Y., Yan, J.: Destruction of acenaphthene, fluorene, anthracene and pyrene by a dc gliding arc plasma reactor. J. Hazard. Mater. 180(1–3), 449–455 (2010)

    Google Scholar 

  32. Materazzi, M., Lettieri, P., Mazzei, L., Taylor, R., Chapman, C.: Reforming of tars and organic sulphur compounds in a plasma-assisted process for waste gasification. Fuel Process. Technol. 137, 259–268 (2015)

    Google Scholar 

  33. Liu, S., Mei, D., Wang, L., Tu, X.: Steam reforming of toluene as biomass tar model compound in a gliding arc discharge reactor. Chem. Eng. J. 307, 793–802 (2017)

    Google Scholar 

  34. Mista, W., Kacprzyk, R.: Decomposition of toluene using non-thermal plasma reactor at room temperature. Catal. Today 137(2–4), 345–349 (2008)

    Google Scholar 

  35. Lee, S., Chen, H.-F., Peng, J.-W.: Investigation of soot deposition and composition in a radio frequency plasma of benzene. Plasma Chem. Plasma Process. 27(3), 256–266 (2007)

    Google Scholar 

  36. Miotk, R., Hrycak, B., Czylkowski, D., Dors, M., Jasinski, M., Mizeraczyk, J.: Liquid fuel reforming using microwave plasma at atmospheric pressure. Plasma Sources Sci. Technol. 25(3), 35022 (2016)

    Google Scholar 

  37. Karuppiah, J., Sivachandiran, L., Karvembu, R., Subrahmanyam, C.: Catalytic nonthermal plasma reactor for the abatement of low concentrations of isopropanol. Chem. Eng. J. 165(1), 194–199 (2010)

    Google Scholar 

  38. Braithwaite, N.S.J.: Introduction to gas discharges. Plasma Sources Sci. Technol. 9(4), 517 (2000)

    Google Scholar 

  39. Zhu, J., et al.: Translational, rotational, vibrational and electron temperatures of a gliding arc discharge. Opt. Express 25(17), 20243–20257 (2017)

    Google Scholar 

  40. Pang, Y., et al.: Plasma-assisted biomass gasification with focus on carbon conversion and reaction kinetics compared to thermal gasification. Energies 11(5), 1302 (2018)

    Google Scholar 

  41. Löffler, F.: Staubabscheiden. Thieme Verlag 2, Stuttgart (1988)

    Google Scholar 

  42. Świerczyński, D., Libs, S., Courson, C., Kiennemann, A.: Steam reforming of tar from a biomass gasification process over Ni/olivine catalyst using toluene as a model compound. Appl. Catal. B 74(3), 211–222 (2007)

    Google Scholar 

  43. Taralas, G., Kontominas, M.G., Kakatsios, X.: Modeling the thermal destruction of toluene (C7H8) as tar-related species for fuel gas cleanup. Energy Fuels 17(2), 329–337 (2003)

    Google Scholar 

  44. Zou, X., et al.: High catalytic performance of Fe-Ni/palygorskite in the steam reforming of toluene for hydrogen production. Appl. Energy 226, 827–837 (2018)

    Google Scholar 

  45. Li, C., Hirabayashi, D., Suzuki, K.: Development of new nickel based catalyst for biomass tar steam reforming producing H2-rich syngas. Fuel Process. Technol. 90(6), 790–796 (2009)

    Google Scholar 

  46. Li, C., Hirabayashi, D., Suzuki, K.: A crucial role of O2 and O22 on mayenite structure for biomass tar steam reforming over Ni/Ca12Al14O33. Appl. Catal. B 88(3), 351–360 (2009)

    Google Scholar 

  47. Kastner, J.R., Mani, S., Juneja, A.: Catalytic decomposition of tar using iron supported biochar. Fuel Process. Technol. 130, 31–37 (2015)

    Google Scholar 

  48. Mani, S., Kastner, J.R., Juneja, A.: Catalytic decomposition of toluene using a biomass derived catalyst. Fuel Process. Technol. 114, 118–125 (2013)

    Google Scholar 

  49. Chan, K.V., Onyshchenko, I., Nikiforov, A., Aziz, G., Morent, R., De Geyter, N.: Plasma polymerization of cyclopropylamine with a sub-atmospheric pressure DBD. Eur. Polym. J. 103, 1–10 (2018)

    Google Scholar 

  50. Gillon, X., Houssiau, L.: Plasma polymerization chemistry of unsaturated hydrocarbons: neutral species identification by mass spectrometry. Plasma Sources Sci. Technol. 23(4), 45010 (2014)

    Google Scholar 

  51. Marias, F., Demarthon, R., Bloas, A., Robert-arnouil, J.P.: Modeling of tar thermal cracking in a plasma reactor. Fuel Process. Technol. 149, 139–152 (2016)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the Campus Future Energy System (Campus FES) under the grant “Biomassevergasung in Nichtthermischen Plasmen”. We thank Ms. Hildegard Stork for supporting the chemical analysis. We acknowledge support by Deutsche Forschungsgemeinschaft and Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) within the funding programme Open Access Publishing.

Author information

Authors and Affiliations

Authors

Contributions

Yin Pang and Hannah Bosch conceived, designed and performed the experiments; Yin Pang and Hannah Bosch analyzed the data; All authors evaluated the results; Yin Pang wrote the paper.

Corresponding author

Correspondence to Yin Pang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, Y., Bosch, H., Hammer, T. et al. Plasma-Aided Reforming of Toluene and Isopropanol with Analysis of Decomposition Mechanism. Waste Biomass Valor 11, 675–688 (2020). https://doi.org/10.1007/s12649-019-00648-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00648-3

Keywords

Navigation