Skip to main content
Log in

A Simplified Biorefinery Concept for the Valorization of Sugar Beet Pulp: Ecofriendly Isolation of Pectin as a Step Preceding Torrefaction

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The valorization of sugar beet pulp (SBP) from sugar industry as a source of valuable substances has been taken in consideration in this work. In particular, the eco-friendly extraction of pectins with citric acid has been adopted as a preliminary step in a simplified biorefinery concept where the pectin-free solid is subsequently subjected to a torrefaction treatment for its upgrading into a commodity solid biofuel. An extensive physicochemical characterization of the raw feedstock and the isolated pectins has also been performed, which may be useful to identify suitable application routes. Results show that the extraction conditions [1.5 pH, 90 °C, 4 h contact time and SBP-to-solvent ratio of 1:30 (g/mL)] selected in this work allow obtaining a relatively high yield (25% wt, db) of high methoxyl pectins (with some impurities), which exhibit the same colorimetric characteristics of commercial citrus pectins and are not conducive to microbial growth. A further purification step of isolated pectins is required to improve the emulsifying properties.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

SBP:

Sugar beet pulp

PE-SBP:

Pectin-extracted sugar beet pulp

HHV:

Higher heating value

LHV:

Lower heating value

TA:

Titratable acidity

FTIR:

Fourier-transform infrared spectroscopy

SEM-EDX:

Scanning electron microscopy-energy-dispersive X-Ray

DE:

Esterification degree

O/W:

Oil-in-water

EA:

Emulsifying activity

ELV:

Emulsified layer volume

WV :

Whole sample volume

LMP:

Low Methoxyl Pectin

HMP:

High methoxyl pectin

AIR:

Alcohol-insoluble residue

References

  1. Brachi, P., Chirone, R., Miccio, F., Miccio, M., Picarelli, A., Ruoppolo, G.: Fluidized bed co-gasification of biomass and polymeric wastes for a flexible end-use of the syngas: focus on bio-methanol. Fuel 128, 88–98 (2014)

    Google Scholar 

  2. Brachi, P., Miccio, F., Miccio, M., Ruoppolo, G.: Torrefaction of tomato peel residues in a fluidized bed of inert particles and a fixed bed reactor. Energy Fuels 30, 4858–4868 (2016)

    Google Scholar 

  3. Cherubini, F.: The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Convers. Manag. 51, 1412–1421 (2010)

    Google Scholar 

  4. IEA Bioenergy Task 42: “Biorefining” (2009) https://www.iea-bioenergy.task42-biorefineries.com/upload_mm/b/b/5/f824918f-5edf-4e6a-b57b-a953ad9592fc_B5_Template_Proceedings_NWBC_2015_Jungmeier%2020150731a.pdf. Accessed 17 Dec 2017

  5. Clark, J.H., Deswarte, F.E.I., Farmer, T.J.: The integration of green chemistry into future biorefineries. Biofuels Bioprod. Biorefin. 3, 72–90 (2009)

    Google Scholar 

  6. Zacharof, M.P.: Grape winery waste as feedstock for bioconversions: applying the biorefinery concept. Waste Biomass Valorization 8, 1011–1102 (2017)

    Google Scholar 

  7. Statista, the statistic portal: Sugar production worldwide from 2009/2010 to 2017/18 (in million metric tons) https://www.statista.com/statistics/249679/total-production-of-sugar-worldwide/. Accessed 17 Dec 2017

  8. Nhan Pham, S., Industry report, 2014. http://fpts.com.vn/FileStore2/File/2014/07/03/Sugar%20industry%20report.pdf. Accessed 17 Dec 2017

  9. Řezbová, H., Belová, A., Škubna, O.: Sugar beet production in the European Union and their future trends. Agris On-line Papers Econ Inform, 5, 165–178: (2013). http://ageconsearch.umn.edu/bitstream/162299/2/agris_on-line_2013_4_rezbova_belova_skubna.pdf. Accessed 17 Dec 2017

  10. Thibault, J.F., Bonnin, E.: New ways to add value to sugar beet pulp. Proceedings of the 2000 sugar processing research conference, Porto, Portugal, April 9–12, 2000. https://archive.org/stream/CAT10399044009/CAT10399044009_djvu.txt. Accessed 16 Jan 2018

  11. Edwards, M.C., De Crescenzo Henriksen, E., Yomano, L.P., Gardner, B.C., Sharma, L.N., Ingram, L.O., Peterson, J.D.: Addition of genes for cellobiase and pectinolytic activity in Escherichia coli for fuel ethanol production from pectin-rich lignocellulosic biomass. Appl. Environ. Microbiol. 77, 5184–5519 (2011)

    Google Scholar 

  12. Šereš, Z., Gyura, J., Filipović, N., Simović, D.S.: Application of decolorization on sugar beet pulp in bread production. Eur. Food Res. Technol. 221, 54–60 (2005)

    Google Scholar 

  13. Özbaş, K.E., Özbaş, O.O.: Sugar beet pulp as biomass. Sugar Ind./Zuckerind. 142, 29–32 (2017)

    Google Scholar 

  14. Kühnel, S., Schols, H.A., Gruppen, H.: Aiming for the complete utilization of sugar-beet pulp: Examination of the effects of mild acid and hydrothermal pretreatment followed by enzymatic digestion. Biotechnol. Biofuels 4, 1–14 (2011)

    Google Scholar 

  15. Brachi, P., Riianova, E., Miccio, M., Miccio, F., Ruoppolo, G., Chirone, R.: Valorization of sugar beet pulp via torrefaction with a focus on the effect of the preliminary extraction of pectins. Energy Fuels 31, 9595–9604 (2017)

    Google Scholar 

  16. Caffall, K.H., Mohnen, D.: The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr. Res. 344, 1879–1900 (2009)

    Google Scholar 

  17. Wüstenberg, T.: General overview of food hydrocolloids. In: Cellulose and cellulose derivatives in the food industry: Fundamentals and applications, pp. 1–68. Wiley, Weinheim (2014)

    Google Scholar 

  18. Zykwinska, A., Boiffard, M.H., Kontkanen, H., Buchert, J., Thibault, J.F., Bonnin, E.: Extraction of green labeled pectins and pectic oligosaccharides from plant byproducts. J. Agric. Food Chem. 56, 8926–8935 (2008)

    Google Scholar 

  19. Grassino, A.N., Halambek, J., Djakovic, S., Brncic, S.R., Dent, M., Grabaric, Z.: Utilization of tomato peel waste from canning factory as a potential source for pectin production and application as tin corrosion inhibitor. Food Hydrocoll. 52, 265–274 (2016)

    Google Scholar 

  20. Yapo, B.M., Robert, C., Etienne, I., Wathelet, B., Paquot, M.: Effect of extraction conditions on the yield, purity and surface properties of sugar beet pulp pectin extracts. Food Chem. 100, 1356–1364 (2007)

    Google Scholar 

  21. Chandel, V., Vaidya, D., Kaushal, M., Gupta, A., Verna, A.K.: Standardization of eco-friendly technique for extraction of pectin from apple pomace Indian. J. Nat. Prod. Resour. 7, 69–73 (2016)

    Google Scholar 

  22. Donaghya, J.A., McKay, A.M.: Pectin extraction from citrus peel by polygalacturonase produced on whey. Bioresour. Technol. 47, 25–28 (1994) (1994)

    Google Scholar 

  23. Ptichkinaa, N.M., Markinaa, O.A., Rumyantseva, G.N.: Pectin extraction from pumpkin with the aid of microbial enzymes. Food Hydrocoll. 22, 192–195 (2008)

    Google Scholar 

  24. Maran, J. P., Sivakumara, V., Thirugnanasambandhama, V., Sridhar, R.: Optimization of microwave assisted extraction of pectin from orange peel. Carbohydr. Polym. 97, 703–709 (2013)

    Google Scholar 

  25. Panchev, I., Kirchev, N., Kratchanov, C.: Improving pectin technology. Int. J. Food Sci. Tech. 23, 337–341 (1988)

    Google Scholar 

  26. Oosterveld, A., Beldman, G., Schols, H.A., Voragen, A.G.J.: Characterization of arabinose and ferulic acid rich pectic polysaccharides and hemicelluloses from sugar beet pulp. Carbohydr. Res. 328, 185–197 (2000)

    Google Scholar 

  27. Shin, H.H., Kim, C.T., Cho, Y.J., Hwang, J.K.: Analysis of extruded pectin extraction from apple pomace by response surface methodology. Food Sci. Biotechnol. 14, 28–31 (2005)

    Google Scholar 

  28. Ukiwe, L.N., Alinnor, J.I.: Extraction of pectin from pineapple (Ananas comosus) peel using inorganic/organic acids and aluminium chloride. Fresh Produce 5, 80–83 (2011)

    Google Scholar 

  29. Ma, S., Yu, S., Zheng, X., Wang, X., Bao, Q., Guo, X.: Extraction, characterization and spontaneous emulsifying properties of pectin from sugar beet pulp. Carbohydr. Polym. 98, 750–753 (2013)

    Google Scholar 

  30. Chen, H., Fu, X., Luo, Z.: Properties and extraction of pectin-enriched materials from sugar beet pulp by ultrasonic-assisted treatment combined with subcritical water. Food Chem. 168, 302–310 (2015)

    Google Scholar 

  31. Brachi, P., Miccio, F., Miccio, M., Ruoppolo, G.: Pseudo-component thermal decomposition kinetics of tomato peels via isoconversional methods. Fuel Process. Technol. 154, 243–250 (2016)

    Google Scholar 

  32. Mæhre, H.K., Dalheim, L., Edvinsen, G.k., Elvevoll, E.O., Jensen, I.J.: Protein determination-method matters. Foods 7, 1–11 (2018)

    Google Scholar 

  33. Channiwala, S.A., Parikh, P.P.: A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81, 1051–1063 (2002)

    Google Scholar 

  34. AOAC. Official methods of analysis (15th ed.). Association of Official Analytical Chemist, Arlington. https://law.resource.org/pub/us/cfr/ibr/002/aoac.methods.1.1990.pdf (1997). Accessed 16 Jan 2018

  35. Adiletta, G., Russo, P., Proietti, N., Capitani, D., Mannina, L., Crescitelli, A., Di Matteo, M.: Characterization of pears during drying by conventional technique and portable non Invasive NMR. Chem. Eng. Trans. 44, 151–156 (2015)

    Google Scholar 

  36. Riianova, E.: The technological aspects of sugar factory waste recycling for pectin production, Master Thesis (in Russian). Ufa State Aviation Technical University, (2017), p. 148

  37. Casas-Orozco, D., Luz Villa, A., Bustamante, F., González, L.M.: Process development and simulation of pectin extraction from orange peels. Food Bioprod. Process. 96, 86–98 (2015)

    Google Scholar 

  38. Concha, J., Weinstein, C., Zúñiga, M.E.: Production of pectic extracts from sugar beet pulp with antiproliferative activity on a breast cancer cell line. Front. Chem. Sci. Eng. 7, 482–489 (2013)

    Google Scholar 

  39. Filippov, M.P., Shkolenko, G.A., Kohn, R.: Determination of the esterification degree of the pectin of different origin and composition by the method of infrared spectroscopy. Chem. Zvesti 32, 218–222 (1978)

    Google Scholar 

  40. Mohamed, H.A., Mohamed, B.E.W.: Fractionation and physicochemical properties of pectic substances extracted from grapefruit peels. J. Food Process. Technol. 6, 1–6 (2015)

    MathSciNet  Google Scholar 

  41. Adiletta, G., Russo, P., Crescitelli, A., Di Matteo, M.: Combined pretreatment for enhancing quality of dried and rehydrated eggplant. Food Bioprocess. Tech. 9, 1912–1923 (2016)

    Google Scholar 

  42. Brasiello, A., Crescitelli, S., Adiletta, G., Di Matteo, M., Albanese, D.: Mathematical model with shrinkage of an eggplant drying process. Chem. Eng. Trans. 24, 451–456 (2011)

    Google Scholar 

  43. Dalev, P.G., Simeonova, L.S.: Emulsifying properties of protein–pectin complexes and their use in oil-containing foodstuffs. J. Sci. Food Agric. 68, 203–206 (1995)

    Google Scholar 

  44. Yılgın, M., Duranay, D., Pehlivan, N.: D.: Co-pyrolysis of lignite and sugar beet pulp. Energ. Convers. Manage. 51, 1060–1064 (2010)

    Google Scholar 

  45. Sakac, M.B., Pericin, D.M., Mandic, A.I., Kormanjos, S.M.: Antioxidant properties of ethanolic extract of sugar beet pulp. Acta Period. Technol. 35, 255–264 (2004)

    Google Scholar 

  46. Li, D., Du, G., Jing, W., Li, J., Yan, J., Liu, Z.: Combined effects of independent variables on yield and protein content of pectin extracted from sugar beet pulp by citric acid. Carbohydr. Polym. 129, 108–114 (2015)

    Google Scholar 

  47. Marsiglia, D.E., Ojeda, kA., Ramírez, M.C., Sánchez, E.: Pectin extraction from cocoa pod husk (Theobroma cacao L.) by hydrolysis with citric and acetic acid. Int. J. Chemtech. Res. 9, 497–507 (2016)

    Google Scholar 

  48. Gandolfi, S., Ottolina, G., Riva, S., Pedrocchi Fantoni, G., Patel, I.: Complete chemical analysis of carmagnola hemp hurds and structural features of its components. BioResources, 8, 2641–2656 (2013)

    Google Scholar 

  49. Naumann, D.: Infrared spectroscopy in microbiology. Encycl. Anal. Chem. 2000, 102–131 (2000)

    Google Scholar 

  50. Kačuráková, M., Belton, P.S., Wilson, R.G., Hirsch, J., Ebringerová, A.: Hydration properties of xylan-type structures: an FTIR study of xylooligosaccharides. Sci. Food Agric 77, 38–44 (1998)

    Google Scholar 

  51. Aguirre, M.J., Isaacs, M., Matsuhiro, B., Mendoza, L., Zúñiga, E.A.: Characterization of a neutral polysaccharide with antioxidant capacity from red wine. Carbohydr. Res. 344, 1095–1101 (2009)

    Google Scholar 

  52. Mondal, S.K., Ray, B., Thakur, S., Ghosal, P.K.: Isolation and characterization of pectic polysaccharides from the fruits of Naringi crenulata. Indian J. Chem. 42, 437–442 (2003)

    Google Scholar 

  53. Sun, R., Hughes, S.: Extraction and physico-chemical characterization of pectins from sugar beet pulp. Polym. J. 30, 671–677 (1998)

    Google Scholar 

  54. Deng, J., Shi, Z.J., Li, X.Z., Liu, H.M.: Soluble polysaccharides isolation and characterization from rabbiteye blueberry (Vaccinium ashei) fruits. BioResources 8, 405–419 (2012)

    Google Scholar 

  55. Flutto, L. Pectin-properties and determination. In: Encyclopedia of food sciences and nutrition (Second Edition), pp. 4440–4449. Academic Press, Cambridge (2003)

  56. Quoc, L.P.T., Huyen, V.T.N., Hue, L.T.N., Hue, N.T.H., Thuan, N.H.D., Tam, N.T.T., Thuan, N.N., Duy, T.H.: Extraction of pectin from pomelo (Citrus maxima) peels with the assistance of microwave and tartaric acid. Int. Food Res. J. 22, 1637–1641 (2015)

    Google Scholar 

  57. Müller-Maatsch, J., Bencivenni, M., Caligiani, A., Tedeschi, T., Bruggeman, G., Bosch, M., Petrusan, J., Van Droogenbroeck, B., Elstf, k, Sforza, S.: Pectin content and composition from different food waste streams. Food Chem. 201, 37–45 (2016)

    Google Scholar 

  58. Fundamentals of Water Activity, DECAGON. http://www.graintec.com.au/media/12856/Fundamentals.pdf. Accessed 20 Dec 2017

  59. Yang, J.S., Mu, T.H., Ma, M.M.: Extraction, structure, and emulsifying properties of pectin from potato pulp. Food Chem. 244, 197–205 (2018)

    Google Scholar 

  60. Sharma, B.R., Dhuldhoya, N.C., Merchant, S.U., Merchant, U.C.: An overview of pectins. Times Food Process J 4, 44–51 (2006)

    Google Scholar 

  61. Waldron, K.W., Selvendran, R.R.: Composition of the cell walls of differenta sparagus (Asparagus officinalis) tissues. Physiol. Plant. 80, 568–575 (1990)

    Google Scholar 

  62. Lampitt, L.H., Money, R.W., Judge, B.E., Urie, A.: Pectin studies. Part I. Method of purification. J. Chem. Technol. Biotechnol. 66, 121–124 (1947)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Dr. Luigi Vertuccio (University of Salerno) for the valuable support to perform FT-IR analyses and the Dr. Cortese Luciano (IRC-CNR) for providing expertise and access to SEM–EDX facilities. The financial support from the Russian Ministry of Education is acknowledged (Grant No. 6444280-4403ES/1 of September 2, 2016). Special thanks are given to COPROB (Cooperativa Produttori Bieticoli) for the feedstock supply.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Brachi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adiletta, G., Brachi, P., Riianova, E. et al. A Simplified Biorefinery Concept for the Valorization of Sugar Beet Pulp: Ecofriendly Isolation of Pectin as a Step Preceding Torrefaction. Waste Biomass Valor 11, 2721–2733 (2020). https://doi.org/10.1007/s12649-019-00582-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00582-4

Keywords

Navigation