Skip to main content

Advertisement

Log in

Glycerol Oligomerization Using Low Cost Dolomite Catalyst

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Production of glycerol oligomers by heterogeneous catalysis is being studied as an option for valorization of this biodiesel by-product. In this study, the catalytic activity of dolomite and the effects of parameters such as catalyst loading, reaction temperature, and reaction time were evaluated. Reusability and stability test were also performed. The material was tested as-received and after a thermal treatment, being characterized by XRD, FTIR, N2 adsorption–desorption, SEM, CO2-TPD and TG/DTG. Reaction products were analyzed by GC-FID for oligomers composition and ICP to verify metallic species leaching. The thermal treatment led to a decrease of the particle size, increase of the specific surface area and improved basicity. Calcined dolomite showed better catalytic performance than natural dolomite, leading to almost 80% glycerol conversion and selectivities for diglycerol and triglycerol of 51% and 3%, respectively. Kinetic test revealed that the reaction is slow along the first hours and later the reaction rate increases. Ca and Mg are leached to the reaction medium but the catalyst could be reused up to 2 cycles, with similar diglycerol yield. The reaction conditions for this material are less severe than those reported previously, which added to the low cost and reusability capacity turns suitable for glycerol oligomerization process.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Marchetti, J.M., Miguel, V.U., Errazu, A.F.: Possible methods for biodiesel production. Renew. Sustain. Energy Rev. 11, 1300–1311 (2007)

    Google Scholar 

  2. Anuar, M.R., Abdullah, A.Z., Othman, M.R.: Etherification of glycerol to polyglycerols over hydrotalcite catalyst prepared using a combustion method. Catal. Commun. 32, 67–70 (2013)

    Google Scholar 

  3. Behr, A., Eilting, J., Irawadi, K., Leschinski, J., Lindner, F.: Improved utilisation of renewable resources: new important derivatives of glycerol. Green Chem. 10, 13–30 (2008)

    Google Scholar 

  4. Gholami, Z., Abdullah, A.Z., Lee, K.-T.: Dealing with the surplus of glycerol production from biodiesel industry through catalytic upgrading to polyglycerols and other value-added products. Renew. Sustain. Energy Rev. 39, 327–341 (2014)

    Google Scholar 

  5. Ciriminna, R., Pina, C., Rossi, M., Pagliaro, M.: Understanding the glycerol market. Eur. J. Lipid Sci. Technol. 116, 1432–1439 (2014)

    Google Scholar 

  6. Cecilia, J.A., García-Sabchez, C., Mérida-Robles, J., Santamaría-González, J., Moreno-Tost, R., Maireles-Torres, P.J.: V and V–P containing Zr-SBA-15 catalysts for dehydration of glycerol to acrolein. Catal. Today 254, 43–52 (2015)

    Google Scholar 

  7. García-sancho, C., Cecilia, J.A., Moreno-Ruiz, A., Mérida-robles, J.M., Gonzales, J.S., Moreno-tost, R., Maireles-Torres, P.: Influence of the niobium supported species on the catalytic dehydration of glycerol to acrolein. Appl. Catal. B Environ. 179, 139–149 (2015)

    Google Scholar 

  8. Nakagawa, Y., Shinmi, Y., Koso, S., Tomishige, K.: Direct hydrogenolysis of glycerol into 1,3-propanediol over rhenium-modified iridium catalyst. J. Catal. 272, 191–194 (2010)

    Google Scholar 

  9. Ketchie, W.C., Murayama, M., Davis, R.J.: Selective oxidation of glycerol over carbon-supported AuPd catalysts. J. Catal. 250, 264–273 (2007)

    Google Scholar 

  10. Arcanjo, M.R.A., Silva, I.J., Rodríguez-castellón, E., Infantes-molina, A., Vieira, R.S.: Conversion of glycerol into lactic acid using Pd or Pt supported on carbon as catalyst. Catal. Today 279, 317–326 (2017)

    Google Scholar 

  11. Kunkes, E.L., Simonetti, D.A., Dumesic, J.A., Pyrz, W.D., Murillo, L.E., Chen, J.G., Buttrey, D.J.: The role of rhenium in the conversion of glycerol to synthesis gas over carbon supported platinum–rhenium catalysts. J. Catal. 260, 164–177 (2008)

    Google Scholar 

  12. Marquez-Alvarez, C., Sastre, E., Pariente, J.: Solid catalysts for the synthesis of fatty esters of glycerol, polyglycerols and sorbitol from renewable resources. Top. Catal. 27, 105–117 (2004)

    Google Scholar 

  13. Ruppert, A.M., Parvulescu, A.N., Arias, M., Hausoul, P.J.C., Bruijnincx, P.C.A., Klein, R.J.M., Weckhuysen, B.M.: Synthesis of long alkyl chain ethers through direct etherification of biomass-based alcohols with 1-octene over heterogeneous acid catalysts. J. Catal. 268, 251–259 (2009)

    Google Scholar 

  14. Liu, F., De Oliveira Vigier, K., Pera-Titus, M., Pouilloux, Y., Clacens, J.M., Decampo, F., Jérôme, F.: Catalytic etherification of glycerol with short chain alkyl alcohols in the presence of Lewis acids. Green Chem. 15, 901 (2013)

    Google Scholar 

  15. García-sancho, C., Moreno-tost, R., Mérida-robles, J.M., Santamaría-gonzález, J., Jiménez-lópez, A., Torres, P.M.: Etherification of glycerol to polyglycerols over MgAl mixed oxides. Catal. Today 167, 84–90 (2009)

    Google Scholar 

  16. Moreno-Tost, R., Guerrero-Urbaneja, P., García-Sancho, C., Mérida-Robles, J., Santamaría-González, J., Jiménez-López, A., Maireles-Torres, P.: Glycerol valorization by etherification to polyglycerols by using metal oxides derived from MgFe hydrotalcites. Appl. Catal. A Gen 470, 199–207 (2014)

    Google Scholar 

  17. Barros, F.J.S., Moreno-tost, R., Cecilia, J.A., Ledesma-Muñoz, A.L., De Oliveira, L.C.C., Luna, F.M.T., Vieira, R.S.: Glycerol oligomers production by etherification using calcined eggshell as catalyst. Mol. Catal. 433, 282–290 (2017)

    Google Scholar 

  18. Sivaiah, M.V., Robles-Manuel, S., Valange, S., Barrault, J.: Recent developments in acid and base-catalyzed etherification of glycerol to polyglycerols. Catal. Today 198, 305–313 (2012)

    Google Scholar 

  19. Sutter, M., Da Silva, E., Duguet, N., Raoul, Y., Métay, E., Lemaire, M.: Glycerol ether synthesis: a bench test for green chemistry concepts and technologies. Chem. Rev. 115, 8609–8651 (2015)

    Google Scholar 

  20. Martin, A., Richter, M.: Oligomerization of glycerol—a critical review. Eur. J. Lipid Sci. Technol. 113, 100–117 (2011)

    Google Scholar 

  21. Plasman, V., Caulier, T., Boulos, N.: Polyglycerol esters demonstrate superior antifogging properties for films. Plast. Addit. Compd. 7, 30–33 (2005)

    Google Scholar 

  22. Medeiros, M.D.A., Rezende, J.D.C., Araújo, M.H., Lago, R.M.: Influência da Temperatura e da Natureza do Catalisador na Polimerização do Glicerol (Influence of temperature and nature of the catalyst on glycerol polymerization). Polímeros 20, 188–193 (2010)

    Google Scholar 

  23. Richter, M., Krisnandi, Y.K., Eckelt, R., Martin, A.: Homogeneously catalyzed batch reactor glycerol etherification by CsHCO3. Catal. Commun. 9, 2112–2116 (2008)

    Google Scholar 

  24. Eshuis, J.I., Laan, J.A., Potman, R.P.: Polymerization of glycerol using a zeolite catalyst. US Patent 5635588 (1997)

  25. Cottin, K., Clacens, J.-M., Pouilloux, Y., Barrault, J.: Préparation de diglycérol et triglycérol par polymérisation directe du glycérol en présence de catalyseurs solides. Oléagineux Corps Gras Lipides. 5, 405–412 (1998)

    Google Scholar 

  26. Ruppert, A.M., Meeldijk, J.D., Kuipers, B.W.M., Ernø, B.H., Weckhuysen, B.M.: Glycerol etherification over highly active CaO-based materials: new mechanistic aspects and related colloidal particle formation. Chem. Eur. J. 14, 2016–2024 (2008)

    Google Scholar 

  27. Clacens, J., Pouilloux, Y., Barrault, J.: Selective etherification of glycerol to polyglycerols over impregnated basic MCM-41 type mesoporous catalysts. Appl. Catal. A Gen 227, 181–190 (2002)

    Google Scholar 

  28. Pérez-Barrado, E., Pujol, M.C., Aguiló, M., Llorca, J., Cesteros, Y., Díaz, F., Pallarès, J., Marsal, L.F., Salagre, P.: Influence of acid–base properties of calcined MgAl and CaAl layered double hydroxides on the catalytic glycerol etherification to short-chain polyglycerols. Chem. Eng. J. 264, 547–556 (2015)

    Google Scholar 

  29. Shahraki, B.K., Mehrabi, B., Dabiri, R.: Thermal behavior of Zefreh dolomite mine (Central Iran). J. Min. Metall. Sect. B Metall. 45, 35–44 (2009)

    Google Scholar 

  30. Wilson, K., Hardacre, C., Lee, A.F., Montero, J.M., Shellard, L.: The application of calcined natural dolomitic rock as a solid base catalyst in triglyceride transesterification for biodiesel synthesis. Green Chem. 10, 654–659 (2008)

    Google Scholar 

  31. Ngamcharussrivichai, C., Nunthasanti, P., Tanachai, S., Bunyakiat, K.: Biodiesel production through transesterification over natural calciums. Fuel Process. Technol. 91, 1409–1415 (2010)

    Google Scholar 

  32. Correia, L.M., de Sousa, N., Novaes, D.S., Cavalcante Jr, C.L., Cecilia, J.A., Rodríguez-castellón, E., Silveira, R.: Characterization and application of dolomite as catalytic precursor for canola and sunflower oils for biodiesel production. Chem. Eng. J. 269, 35–43 (2015)

    Google Scholar 

  33. Algoufi, Y.T., Kabir, G., Hameed, B.H.: Synthesis of glycerol carbonate from biodiesel by-product glycerol over calcined dolomite. J. Taiwan Inst. Chem. Eng. 70, 179–187 (2017)

    Google Scholar 

  34. Elbaba, I.F., Williams, P.T.: High yield hydrogen from the pyrolysis–catalytic gasification of waste tyres with a nickel/dolomite catalyst. Fuel. 106, 528–536 (2013)

    Google Scholar 

  35. Engler, P., Santana, M.W., Mittleman, M.L.: Non-isothermal in situ XRD analysis of dolomite decomposition. Rigaku J. 5, 3–8 (1988)

    Google Scholar 

  36. Gunasekaran, S., Anbalagan, G.: Thermal decomposition of natural dolomite. Bull. Mater. Sci. 30, 339–344 (2007)

    Google Scholar 

  37. Granados, M.L., Poves, M.D.Z., Alonso, D.M., Mariscal, R., Galisteo, F.C., Moreno-Tost, R., Santamaría, J., Fierro, J.L.G.: Biodiesel from sunflower oil by using activated calcium oxide. Appl. Catal. B Environ. 73, 317–326 (2007)

    Google Scholar 

  38. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-reinoso, F., Rouquerol, J., Sing, K.S.W.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl. Chem. 87, 1051–1069 (2015)

    Google Scholar 

  39. Ávila, I., Crnkovic, P.M., Milioli, F.E.: Metodologia para o estudo da porosidade de dolomita em ensaio de sulfatação interrompida. Quim. Nova 33, 1732–1738 (2010)

    Google Scholar 

  40. Wang, R., Li, H., Chang, F., Luo, J., Hanna, M.A., Tan, D., Hu, D., Zhang, Y., Song, Y., Song, B.: A facile, low-cost route for the preparation of calcined porous calcite and dolomite and their application as heterogeneous catalysts in biodiesel production. Catal. Sci. Technol. 3, 2244–2251 (2013)

    Google Scholar 

  41. Santos, R.C.R., Vieira, R.B., Valentini, A.: Optimization study in biodiesel production via response surface methodology using dolomite as a heterogeneous catalyst. J. Catal. 2014, 1–11 (2014)

    Google Scholar 

  42. Garti, N., Aserin, A., Zaidman, B.: Polyglycerol esters: optimization and techno-economic evaluation. J. Am. Oil Chem. Soc. 1981, 878–883 (1981)

    Google Scholar 

  43. Salehpour, S., Dube, M.A.: Towards the sustainable production of higher-molecular-weight polyglycerol. Macromol. Chem. Phys. 212, 1284–1293 (2011)

    Google Scholar 

  44. Calatayud, M., Ruppert, A.M., Weckhuysen, B.M.: Theoretical study on the role of surface basicity and lewis acidity on the etherification of glycerol over alkaline earth metal oxides. Chem. Eur. J. 116, 10864–10870 (2009)

    Google Scholar 

  45. Gholami, Z., Abdullah, A.Z., Lee, K.T.: Catalytic etherification of glycerol to diglycerol over heterogeneous calcium-based mixed oxide catalyst: reusability and stability. Chem. Eng. Commun. 202, 1397–1405 (2015)

    Google Scholar 

  46. European Parliament: and Council Directive No. 95/2/EC (1995)

  47. Pouilloux, Y., Ramirez, A.E., Clacens, J., Lorentz, C.: Comparison between SBA-15 and MCM-41 structure on the stability and the selectivity of basic catalysts in oligomerization of glycerol. Curr. Org. Chem. 16, 2774–2781 (2012)

    Google Scholar 

  48. Ayoub, M., Khayoon, M.S., Abdullah, A.Z.: Synthesis of oxygenated fuel additives via the solventless etherification of glycerol. Bioresour. Technol. 112, 308–312 (2012)

    Google Scholar 

  49. Kouzu, M., Tsunomori, M., Yamanaka, S., Hidaka, J.: Solid base catalysis of calcium oxide for a reaction to convert vegetable oil into biodiesel. Adv. Powder Technol. 21, 488–494 (2010)

    Google Scholar 

  50. León-Reina, L., Cabeza, A., Rius, J., Maireles-Torres, P., Alba-Rubio, A.C., López Granados, M.: Structural and surface study of calcium glyceroxide, an active phase for biodiesel production under heterogeneous catalysis. J. Catal. 300, 30–36 (2013)

    Google Scholar 

  51. Ilgen, O.: Dolomite as a heterogeneous catalyst for transesterification of canola oil. Fuel Process. Technol. 92, 452–455 (2011)

    Google Scholar 

  52. Jaiyen, S., Naree, T., Ngamcharussrivichai, C.: Comparative study of natural dolomitic rock and waste mixed seashells as heterogeneous catalysts for the methanolysis of palm oil to biodiesel. Renew. Energy. 74, 433–440 (2015)

    Google Scholar 

  53. O’Neill, R.E., Vanoye, L., De Bellefon, C., Aiouache, F.: Aldol-condensation of furfural by activated dolomite catalyst. Appl. Catal. B Environ. 144, 46–56 (2014)

    Google Scholar 

  54. Galadima, A., Muraza, O.: Sustainable production of glycerol carbonate from by-product in biodiesel plant. Waste Biomass Valorization 8, 141–152 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), Centro de Tecnologias Estratégicas do Nordeste [INT/MCT-FACEPE APQ-1015-3.06/14], Central Analítica—[UFC/CT-INFRA/MCTI-SISNANO/Pró-Equipamentos], CAPES, Project CAPES/FUNCAP (Áreas Estratégicas) [Project E1-0079-0004301] and FEDER funds and Spanish Ministry of Economy and Competitiveness [IEDI-2016-00743] I3 program and project [CTQ2015-68951-C3-3-R].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo S. Vieira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barros, F.J.S., Cecilia, J.A., Moreno-Tost, R. et al. Glycerol Oligomerization Using Low Cost Dolomite Catalyst. Waste Biomass Valor 11, 1499–1512 (2020). https://doi.org/10.1007/s12649-018-0477-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0477-5

Keywords

Navigation