Skip to main content

Advertisement

Log in

Enzymatic Hydrolysate of Palm Oil Mill Effluent as Potential Substrate for Bioflocculant BM-8 Production

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to optimize the enzymatic hydrolysis of palm oil mill effluent (POME) to release fermentable sugar as a platform convertible to value-added product i.e. bioflocculant.

Methods

A Plackett–Burman design followed by a central composite design of response surface methodology was applied to optimize the enzymatic hydrolysis of POME to release fermentable sugars. Subsequently the enzymatic hydrolysate of POME was used to produce bioflocculant (BM-8) using POME-isolated Bacillus marisflavi NA8. The produced BM-8 was then characterized and its potential in microalgae harvesting was explored.

Results

Pure substrate (100%, v/v) dosed with 1% (v/v) enzyme and agitated at 200 rpm yielded optimum fermentable sugar from POME hydrolysate. Subsequently, the medium produced 9.72 g/L of BM-8 during 24 h of cultivation. The BM-8, which composed primarily of polysaccharide (74%) and protein (25%) with 1% nucleic acid was found to be thermally stable and able to withstand a wide pH range, with its optimum tolerance at pH 6. Additionally, the BM-8 was found efficient (90% biomass recovery in 30 min) for precipitation of Chlorella vulgaris, thus suggesting its great potential as a flocculating agent.

Conclusion

The study demonstrated that POME hydrolysate may be used as a cheap and renewable substrate for BM-8 production. In addition, BM-8’s flocculating capability showed it potential to substitute hazardous chemical flocculants.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kushairi, A., Singh, R., Ong-Abdullah, M.: The oil palm industry in Malaysia: thriving with transformative technologies. J. Oil Palm Res. 29(4), 431–439 (2017)

    Google Scholar 

  2. More, T.T., Yadav, J.S.S., Yan, S., Tyagi, R.D., Surampalli, R.Y.: Extracellular polymeric substances of bacteria and their potential environmental applications. J. Environ. Manag. 144, 1–25 (2014)

    Google Scholar 

  3. Chaisorn, W., Prasertsan, P., O-Thong, S., Methacanon, P.: Production and characterization of biopolymer as bioflocculant from thermostable Bacillus subtilis WD161 in palm oil mill effluent. Int. J. Hydrog. Energy 41, 21657–21664 (2016)

    Google Scholar 

  4. Czemierska, M., Szczes, A., Holysz, L., Wiater, A., Jarosz-Wilkolazka, A.: Characterisation of exopolymer R-202 isolated from Rhodococcus rhodochrous and its flocculating properties. Eur. Polym. J. 88, 21–33 (2017)

    Google Scholar 

  5. Rani, R.P., Anandharaj, M., Sabhapathy, P., Ravindran, A.D.: Physiochemical and biological characterization of novel exopolysaccharide produced by Bacillus tequilensis FR9 isolated from chiken. Int. J. Biol. Macromol. 96, 1–10 (2017)

    Google Scholar 

  6. Buthelezi, S.P., Olaniran, A.O., Pillay, B.: Turbidity and microbial load removal from river water using bioflocculants from indigenous bacteria isolated form wastewater in South Africa. Afr. J. Biotechnol. 8, 3261–3266 (2009)

    Google Scholar 

  7. Gong, W.X., Wang, S.G., Sun, X.F., Liu, X.W., Yue, Q.Y., Gao, B.Y.: Bioflocculant production by culture of Serratia ficaria and its application in wastewater treatment. Bioresour. Technol. 99, 4668–4674 (2008)

    Google Scholar 

  8. Guo, J., Chen, C.: Removal of arsenite by a microbial bioflocculant produced from swine wastewater. Chemosphere 181, 759–766 (2017)

    Google Scholar 

  9. Sajayan, A., Kiran, G.S., Priyadhashini, S., Poulose, N., Selvin, J.: Revealing the ability of a novel polysaccharide bioflocculant in bioremediation of heavy metals sensed in a Vibrio bioluminescence reporter assay. Environ. Pollut. 228, 118–127 (2017)

    Google Scholar 

  10. Zhao, H., Zhong, C., Chen, H., Yao, J., Tan, L., Zhang, Y., Zhou, J.: Production of bioflocculants prepared from formaldehyde wastewater for the potential removal of arsenic. J. Environ. Manag. 172, 71–76 (2016)

    Google Scholar 

  11. Zhang, Y., Wang, F., Yang, X., Gu, C., Kengara, F., Hong, Q., Lv, Z., Jiang, X.: Extracellular polymeric substances enhanced mass transfer of polycyclic aromatic hydrocarbons in the two-liquid-phase system for biodegradation. Appl. Microbiol. Biotechnol. 90, 1063–1071 (2011)

    Google Scholar 

  12. Li, R., Ning, X., Sun, J., Wang, Y., Liang, J., Lin, M., Zhang, Y.: Decolorization and biodegradation of the Congo red by Acinetobacter baumannii YNWH 226 and its polymer production’s flocculation and dewatering potential. Bioresour. Technol. 194, 233–239 (2015)

    Google Scholar 

  13. Sathiyanarayanan, G., Kiran, G.S., Selvin, J.: Synthesis of silver nanoparticles by polysaccharide bioflocculant produced from marine Bacillus subtilis MSBN17. Colloids Surf. B 102, 13–20 (2013)

    Google Scholar 

  14. Drakou, E.M., Amorim, C.L., Castro, P.M.L., Panagiotou, F., Vyrides, I.: Wastewater valorization by pure bacterial cultures to extracellular polymeric substances (EPS) with high emulsifying potential and flocculation activities. Waste Biomass Valoriz. (2017). https://doi.org/10.1007/s12649-017-0016-9

    Article  Google Scholar 

  15. Wan, C., Zhao, X.Q., Guo, S.L., Alam, M.A., Bai, F.W.: Bioflocculant production from Solibacillus silvestris W01 and its application in cost-effective harvest of marine microalga Nannochloropsis oceanica by flocculation. Bioresour. Technol. 135, 207–212 (2013)

    Google Scholar 

  16. Liu, C., Wang, K., Jiang, J.H., Liu, W.J., Wang, J.Y.: A novel bioflocculant produced by a salt-tolerant, alkaliphilic and biofilm-forming strain Bacillus agaradhaerens C9 and its application in harvesting Chlorella minutissima UTEX2341. Biochem. Eng. J. 93, 166–172 (2015)

    Google Scholar 

  17. Li, Y., Xu, Y., Liu, L., Jiang, X., Zhang, K., Zheng, T., Wang, H.: First evidence of bioflocculant from Shinella albus with flocculation on harvesting of Chlorella vulgaris biomass. Bioresour. Technol. 218, 807–815 (2016)

    Google Scholar 

  18. Li, Y., Xu, Y., Liu, L., Li, P., Yan, Y., Chen, T., Zheng, T., Wang, H.: Flocculation mechanism of Aspergillus niger on harvesting of Chlorella vulgaris biomass. Algal Res. 25, 402–412 (2017)

    Google Scholar 

  19. Li, Y., Xu, Y., Zheng, T., Wang, H.: Flocculation mechanism of the actinomycete Streptomyces sp. hsn06 on Chlorella vulgaris. Bioresour. Technol. 239, 137–143 (2017)

    Google Scholar 

  20. Pu, S., Ma, H., Deng, D., Xue, S., Zhu, R., Zhou, Y., Xiong, X.: Isolation, identification, and characterization of an Aspergillus niger bioflocculant-producing strain using potato starch wastewater as nitrile and its application. PLoS ONE 13(1), 1–17 (2018)

    Google Scholar 

  21. Okeiyeto, K., Nwodo, U.U., Okoli, S.A., Mabinya, L.V., Okoh, A.I.: Implications for public health demands alternative to inorganic and synthetic flocculants: bioflocculants as important candidates. Microbiol. Open 5(2), 177–211 (2016)

    Google Scholar 

  22. Sekelwa, C., Anthony, U.M., Mabinya, L.V., Anthony, O.I.: Characterization of a thermostable polysaccharide bioflocculant produced by Virgibacillus species isolated from Algao bay. Afr. J. Microbiol. Res. 7(23), 2925–2938 (2013)

    Google Scholar 

  23. Nurul Adela, B., Nasrin, A.B., Loh, S.K., Madihah, A.Z.: Isolation and identification of novel bioflocculant-producing bacteria from palm oil mill effluent. J. Pure Appl. Microbiol. 9, 1–12 (2015)

    Google Scholar 

  24. Nurul-Adela, B., Nasrin, A.B., Loh, S.K.: Palm oil mill effluent as a low-cost substrate for bioflocculant production by Bacillus marisflavi NA8. Bioresour. Bioprocess. 3(20), 1–8 (2016)

    Google Scholar 

  25. APHA: Standard Methods for the Examination of Water and Wastewater, 21st edn. American Public Health Association (APHA), Washington, DC (2005)

    Google Scholar 

  26. Loh, S.K., Lai, M.E., Ngatiman, M., Lim, W.S., Choo, Y.M., Zhang, Z., Salimon, J.: Zero discharge treatment technology of palm oil mill effluent. J. Oil Palm Res 25(3), 273–281 (2013)

    Google Scholar 

  27. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. 13, 420–428 (1959)

    Google Scholar 

  28. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F.: Colorimetric method for determination of sugars and related substrates. Anal. Chem. 28(3), 350–356 (1956)

    Google Scholar 

  29. Vello, V., Phang, S.M., Chu, W.L., Nazia, A.M., Lim, P.E., Loh, S.K.: Lipid productivity and fatty acid composition-guided selection of Chlorella strains isolated from Malaysia for biodiesel production. J. Appl. Phycol. 26, 1399–1413 (2014)

    Google Scholar 

  30. Idris, N.A., Loh, S.K., Lau, H.L.N., Mustafa, E.M., Vello, V., Tan, C.Y., Phang, S.M.: Cultivation of microalgae in medium containing palm oil mill effluent and its conversion into biofuel. J. Oil Palm Res. 29(2), 291–299 (2017)

    Google Scholar 

  31. Zheng, Y., Ye, Z.L., Fang, X.L., Li, Y.H., Cai, W.M.: Production and characteristics of a bioflocculant produced by Bacillus sp. F19. Bioresour. Technol. 99, 7686–7691 (2008)

    Google Scholar 

  32. Gao, Q., Zhu, X.H., Mu, J., Zhang, Y., Dong, X.W.: Using Ruditapes philippinarum conglutination mud to produce bioflocculant and its applications in wastewater treatment. Bioresour. Technol. 100, 4996–5001 (2009)

    Google Scholar 

  33. Badireddy, A.R., Chellam, S., Gassman, P.L., Engelhard, M.H., Lea, A.S., Rosso, K.M.: Role of extracellular polymeric substances in bioflocculation of activated sludge microorganisms under glucose-controlled conditions. Water Res. 44, 4505–4516 (2010)

    Google Scholar 

  34. Aqma, W.S., Quilty, B.: Influences of extracellular polymeric substances (EPS) for autoaggregation of Pseudomonas putida CP1 during growth on mono-chlorophenol. Malays. J. Microbiol. 11(13), 246–253 (2015)

    Google Scholar 

  35. Jorand, F., Boue-Bigne, F., Block, J.C., Urbain, V.: Hydrophobic/hydrophilic properties of activated sludge exopolymeric substances. Water Sci. Technol. 37, 307–315 (1998)

    Google Scholar 

  36. Suzuki, H., Daimon, M., Awano, T., Umekage, S., Tanaka, T., Kikuchi, Y.: Characterization of extracellular DNA production and flocculation of the marine photosynthetic bacterium Rhodovulum sulfidophilum. Appl. Microbiol. Biotechnol. 84, 349–356 (2009)

    Google Scholar 

  37. Xiong, Y.Y., Wang, Y.P., Yu, Y., Li, Q.B., Wang, H.T., Chen, R.H., He, N.: Production and characterization of a novel bioflocculant from Bacillus licheniformis. Appl. Environ. Microbiol. 76, 2778–2782 (2010)

    Google Scholar 

  38. Guo, J., Yu, J., Xin, X., Zou, C., Cheng, Q., Yang, H., Nengzi, L.: Characterisation and flocculation mechanism of a bioflocculant from hydrolyzate of rice stover. Bioresour. Technol. 177, 393–397 (2015)

    Google Scholar 

  39. Czemierska, M., Szczes, A., Pawlik, A., Wiater, A., Jarosz-Wilkolazka, A.: Production and characterisation of exopolymer from Rhodococcus opacus. Biochem. Eng. J. 112, 143–152 (2016)

    Google Scholar 

  40. Li, Z., Zhong, S., Lei, H.Y., Chen, R.W., Yu, Q., Li, H.L.: Production of a novel bioflocculant by Bacillus licheniformis X14 and its application to low temperature drinking water treatment. Bioresour. Technol. 100, 3650–3656 (2009)

    Google Scholar 

  41. Elkady, M., Farag, S., Zaki, S., Abd-El-Haleem, D.: Bacillus mojavensis strain 32A, a bioflocculant-producing bacterium isolated from an Egyptian salt production pond. Bioresour. Technol. 102, 8143–8151 (2011)

    Google Scholar 

  42. Ji, B., Zhang, X.Y., Li, Z., Xie, H.Q., Xiao, X.M., Fan, G.J.: Flocculation properties of a bioflocculant produced by Bacillus licheniformis.. Water Sci. Technol. 62, 1907–1913 (2010)

    Google Scholar 

  43. Zaki, S.A., Elkady, M.F., Fareg, S., Abdel-Haleem, D.: Characterization and flocculation properties of a carbohydrate bioflocculant from a newly isolated Bacillus velezensis 40B. J. Environ. Biol. 34, 51–58 (2013)

    Google Scholar 

  44. Luvuyo, N., Nwodo, U.U., Mabinya, L.V., Okoh, A.I.: Studies on bioflocculant production by a mixed culture of Methylobacterium sp. Obi and Actinobacterium sp. Mayor. BMC Biotechnol. 13, 62 (2013)

    Google Scholar 

  45. Zhang, Z.Q., Lin, B., Xia, S.Q., Wang, X.J., Yang, A.M.: Production and application of a novel bioflocculant by multiple-microorganism consortia using brewery wastewater as carbon source. J. Environ. Sci. 19, 667–673 (2007)

    Google Scholar 

  46. Gomma, E.Z.: Production and characteristics of a heavy metal removing bioflocculant produced by Pseudomonas aeruginosa. Pol. J. Microbiol. 4, 281–524 (2012)

    Google Scholar 

  47. Okeiyeto, K., Nwodo, U.U., Mabinya, L.V., Okili, A.S., Okoh, A.I.: Characterisation of a bioflocculant (MBF-UFH) produced by Bacillus sp. AMREG7. Int. J. Mol. Sci. 16, 12986–13003 (2015)

    Google Scholar 

  48. Wang, L., Ma, F., Lee, D.J., Wang, A., Ren, N.: Bioflocculants from hydrolysates of corn stover using isolated strain Ochrobactium ciceri W2. Bioresour. Technol. 145, 259–263 (2013)

    Google Scholar 

  49. Mabinya, L.V., Cosa, S., Mkhwetshana, N., Okoh, A.I.: Halomonas sp. OKOH- a marine bacterium isolated from the bottom sediment od Algoa bay—produces a polysaccharide bioflocculant: partial characterization and biochemical analysis of its properties. Molecules 16, 4358–4370 (2011)

    Google Scholar 

  50. Salim, S., Vermue, M.H., Wijffels, R.H.: Ratio between autoflocculating and target microalgae affects the energy-efficient harvesting by bio-flocculation. Bioresour. Technol. 118, 49–55 (2012)

    Google Scholar 

  51. Chen, L., Wang, C., Wang, W., Wei, J.: Optimal conditions of different flocculation methods for harvesting Scenedesmus sp. cultivated in an open-pond system. Bioresour. Technol. 133, 9–15 (2013)

    Google Scholar 

  52. Papazi, A., Makridis, P., Divanach, P.: Harvesting Chlorella minutissima using cell coagulants. J. Appl. Phycol. 22, 349–355 (2010)

    Google Scholar 

  53. Sirin, S., Clavero, E., Salvadó, J.: Potential pre-concentration methods for Nannochloropsis gaditana and a comparative study of pre-concentrated sample properties. Bioresour. Technol. 132, 293–304 (2013)

    Google Scholar 

  54. Xu, Y., Purton, S., Baganz, F.: Chitosan flocculation to aid the harvesting of the microalga Chlorella sorokiniana. Bioresour. Technol. 129, 296–301 (2013)

    Google Scholar 

Download references

Acknowledgements

The authors thank the Malaysian Palm Oil Board (MPOB) for permission to publish the findings. Thanks are also due to the Malaysia Genome Institute (MGI) for providing the enzyme under Ministry of Agriculture No. TF0310F086, and Shanxi Tianli Jinrun Industrial Co. Ltd. for the chemical flocculants provided. The technical assistance provided by the interns and the staff of the Engineering and Processing Research Division of MPOB is also deeply appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurul Adela Bukhari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bukhari, N.A., Loh, S.K., Nasrin, A.B. et al. Enzymatic Hydrolysate of Palm Oil Mill Effluent as Potential Substrate for Bioflocculant BM-8 Production. Waste Biomass Valor 11, 17–29 (2020). https://doi.org/10.1007/s12649-018-0421-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0421-8

Keywords

Navigation