Skip to main content
Log in

Analysis of the Continuous Bioconversion of Glycerol by Promotion of Highly Glycerol-Resistant Glycerol-Degrading Bacteria

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

We identified component microorganisms in a fed-batch operation by modulating the mixed flora via addition of glucose to achieve continuous bioconversion of hardly degradable glycerol.

Methods

To study the microbial community structure of the flora accumulated by the addition of glucose, 16S ribosomal RNA (rRNA) gene was sequenced using PCR with denaturing gradient gel electrophoresis (DGGE).

Results

Burkholderia vietnamiensis, Burkholderia phenoliruptrix, Staphylococcus aureus, Bacillus licheniformis, and Clostridium pasteurianum were identified as component strains. Using the colony containing C. pasteurianum, the hydrogen yield was 0.34 mol/(mol glycerol). C. pasteurianum, B. licheniformis, B. vietnamiensis, and B. phenoliruptrix utilized both glycerol and glucose as substrates and could tolerate high glycerol loads. In early fermentation, predominance of the hydrogen-producing C. pasteurianum resulted in the conversion of glycerol into hydrogen and 1,3-propanediol. In contrast, in late fermentation, the auxiliary degradation of B. licheniformis and the two Burkholderia strains enabled continuous conversion of the glycerol to valuable compounds.

Conclusions

Glucose addition results in a stable flora by optimizing the ratio of highly glycerol-resistant glycerol-degrading bacteria, thereby establishing an anaerobic digestion process that allows continuous conversion of high loads of glycerol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rivero, M., Solera, R., Perez, M.: Anaerobic mesophilic co-digestion of sewage sludge with glycerol: enhanced biohydrogen production. Int. J. Hydrog. Energy 39, 2481–2488 (2014)

    Article  Google Scholar 

  2. Yazdani, S.S., Gonzalez, R.: Anaerobic fermentation of glycerol: a path to economic viability for the biofuel industry. Curr. Opin. Biotechnol. 18, 213–219 (2007)

    Article  Google Scholar 

  3. Cooksaw, T., O-Thong, S., Prasertsan, P.: Fermentation production of hydrogen and soluble metabolites from crude glycerol of biodiesel plant by newly isolated thermotolerant Klebsiella pneumonia TR17. Int. J. Hydrog. Energy 37, 13314–13322 (2012)

    Article  Google Scholar 

  4. Vivek, N., Pandey, A., Binod, P.: Biological valorization of pure and crude glycerol into 1,3-propanediol using a novel isolate Lactobacillus brevis N1E9.3.3. Bioresour. Technol. 213, 222–230 (2016)

    Article  Google Scholar 

  5. Pagliaro, M., Ciriminna, R., Kimura, H., Rossi, M., Della Pina, C.: From glycerol to value-added products. Angew. Chem. Int. Ed. 46, 4434–4440 (2007)

    Article  Google Scholar 

  6. Nakashimada, Y., Rachman, M.A., Kakizono, T., Nishio, N.: H2 production of Enterobacter aerogenes altered by extracellular and intracellular redox states. Int. J. Hydrog. Energy 27, 1399–1405 (2002)

    Article  Google Scholar 

  7. Rachman, M.A., Furutani, Y., Nakashimada, Y., Kakizono, T., Nishio, N.: Enhanced hydrogen production in altered mixed acid fermentation of glucose by Enterobacter aerogenes. J. Ferment. Bioeng. 83, 358–363 (1997)

    Article  Google Scholar 

  8. Ito, T., Nakashimada, Y., Senba, K., Matsui, T., Nishio, N.: Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. J. Biosci. Bioeng. 100, 260–265 (2005)

    Article  Google Scholar 

  9. Sakai, S., Yagishita, T.: Microbial production of hydrogen and ethanol from glycerol-containing wastes discharged from a biodiesel fuel production plant in a bioelectrochemical reactor with thionine. Biotechnol. Bioeng. 98, 340–348 (2007)

    Article  Google Scholar 

  10. Chatzifragkou, A., Dietz, D., Komaitis, M., Zeng, A.P., Papanikolaou, S.: Effect of biodiesel-derived waste glycerol impurities on biomass and 1,3-propanediol production of Clostridium butyricum VPI 1718. Biotechnol. Bioeng. 107, 76–84 (2010)

    Article  Google Scholar 

  11. Gonzales-Pajuelo, M., Meynial-Salles, I., Mendes, F., Andrade, J.C., Vasconcelos, I., Soucaille, P.: Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol. Metab. Eng. 7, 329–336 (2005)

    Article  Google Scholar 

  12. Khanna, S., Shukla, A.K., Goyal, A., Moholkar, V.S.: Alcoholic biofuels production from biodiesel derived glycerol by Clostridium pasteurianum whole cells immobilized on silica. Waste Biomass Valor. 5, 789–798 (2014)

    Article  Google Scholar 

  13. Batstone, D.J., Keller, J., Angelidaki, I., Kalyuzhnyi, S.V., Pavlostathis, S.G., Rozzi, A., Sanders, W.T.M., Siegrist, H., Vavilin, V.A.: The IWA anaerobic digestion model No 1 (ADM1). Wat. Sci. Tech. 45, 65–73 (2002)

    Article  Google Scholar 

  14. Speece, R.E.: Anaerobic Biotechnology for Industrial Wastewaters. Archae Press, Nashville (1996)

    Google Scholar 

  15. Tokumoto, H., Sakuda, N., Nagao, T., Yoshihara, A., Nomura, T.: Immobilization and growth of aceticlastic methanogen on bamboo charcoal. J. Environ. Biotechnol. 12, 155–161 (2012)

    Google Scholar 

  16. Kurahashi, K., Kimura, C., Fujimoto, Y., Tokumoto, H.: Value-adding conversion and volume reduction of sewage sludge by anaerobic co-digestion with crude glycerol. Bioresour. Technol. 232, 119–125 (2017)

    Article  Google Scholar 

  17. Tokumoto, H., Kashiwagi, M.: Change in dominant fermentation type during anaerobic digestion of high-loading glycerol with slight glucose content. Bioresour. Technol. 126, 13–17 (2012)

    Article  Google Scholar 

  18. Kashiwagi, M., Kurahashi, K., Nomura, T., Tokumoto, H.: Anaerobic digestion and resource process of glycerol by fed-batch culture. J. Environ. Conserv. Eng. 42, 94–100 (2013)

    Article  Google Scholar 

  19. Tokumoto, H., Tanaka, M.: Novel anaerobic digestion included by bacterial components for value-added byproducts from high-loading glycerol. Bioresour. Technol. 107, 327–332 (2012)

    Article  Google Scholar 

  20. Muyzer, G., de Waal, E.C., Uitterlinden, A.G.: Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified gene coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695–700 (1993)

    Google Scholar 

  21. Sanger, F., Nicklen, S., Coulson, A.R.: DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA. 74, 5463–5467: (1977)

    Article  Google Scholar 

  22. Birrer, G.A., Cromwick, A.M., Gross, R.A.: c-Poly (glutamic acid) formation by Bacillus licheniformis 9945a: physiological and biochemical studies. Int. J. Biol. Macromol. 16, 265–275 (1994)

    Article  Google Scholar 

  23. Ko, Y.H., Gross, R.A.: Effects of glucose and glycerol on γ-poly(glutamic acid) formation by Bacillus licheniformis ATCC 9945a. Biotechnol. Bioeng. 57, 430–437 (1998)

    Article  Google Scholar 

  24. Dabrock, B., Bahl, H., Gottschalk, G.: Parameters affecting solvent production by Clostridium pasteurianum. Appl. Environ. Microbiol. 58, 1233–1239 (1992)

    Google Scholar 

  25. Lo, Y.C., Chen, X.J., Huang, C.Y., Yuan, Y.J., Chang, J.S.: Dark fermentative hydrogen production with crude glycerol from biodiesel industry using indigenous hydrogen-producing bacteria. Int. J. Hydrog. Energy 38, 15815–15822 (2013)

    Article  Google Scholar 

  26. Zhu, C., Nomura, C.T., Perrotta, J.A., Stipanovic, A.J., Nakas, J.P.: Production and characterization of poly-3-hydroxybutyrate from biodiesel-glycerol by Burkholderia cepacia ATCC 17759. Biotechnol. Prog. 26, 424–430 (2010)

    Google Scholar 

  27. Rodríguez-Contreras, A., Koller, M., Dias, M.M.S., Calafell-Monfort, M., Braunegg, G., Marqués-Calvo, M.S.: Influence of glycerol on poly(3-hydroxybutyrate) production by Cupriavidus necator and Burkholderia sacchari. Biochem. Eng. J. 94, 50–57 (2015)

    Article  Google Scholar 

  28. Zinder, S.: Conversation of acetic acid to methane by thermophies. FEMS Microbiol. Rev. 75, 125–138 (1990)

    Article  Google Scholar 

  29. Westerman, P., Ahring, B.K., Mah, R.A.: Threshold acetate concentration for acetate catabolism by aceticlastic methanogenic bacteria. Appl. Environ. Microbiol. 55, 514–515 (1989)

    Google Scholar 

  30. Henijnen, J.J.: Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis and Bioseparation. Wiley New York (1999)

    Google Scholar 

  31. Fountoulakis, M.S., Petousi, I., Manios, T.: Co-digestion of sewage sludge with glycerol to boost biogas production. Waste Manage 30, 1849–1853 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant No. JP19656243 and JP21241022 from the Japan Society for the Promotion of Science, an Adaptable and Seamless Technology Transfer Program through Target-driven R&D (A-STEP) from the Japan Science and Technology Agency (JST), and a research grant from the Japan Soap and Detergent Association (JSDA). The sponsors had no role in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hayato Tokumoto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurahashi, K., Hisada, K., Kashiwagi, M. et al. Analysis of the Continuous Bioconversion of Glycerol by Promotion of Highly Glycerol-Resistant Glycerol-Degrading Bacteria. Waste Biomass Valor 10, 3321–3330 (2019). https://doi.org/10.1007/s12649-018-0344-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0344-4

Keywords

Navigation