Skip to main content

Advertisement

Log in

Interactions Between Microalgae and Microorganisms for Wastewater Remediation and Biofuel Production

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Microalgae have been regarded as a sustainable feedstock to produce biofuel to meet the serious problems arising from the depletion of fossil fuels. However, the pure cultivation of microalgae for biofuel production is commercially infeasible due to the high costs associated with culturing and harvesting microalgae in this way. The coupling of microalgae biofuel production with wastewater treatment provides a method of circumventing this deadlock and highlights the necessity of research on the interactions between microalgae and wastewater-borne microorganisms. This paper reviews the interactions between microalgae and other microorganisms, such as microzooplankton, bacteria, fungi, algae, and viruses, and the mechanisms involved in these interactions that have been identified in recent years. Several factors affecting the outcomes of co-culture and wastewater-culture are involved. At present, the interactions between microalgae and wastewater-borne microorganisms are still unclear and merit further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Odjadjare, E.C., Mutanda, T., Olaniran, A.O.: Potential biotechnological application of microalgae: a critical review. Crit. Rev. Biotechnol. 37, 37–52 (2017)

    Google Scholar 

  2. Ebenezer, V., Medlin, L.K., Ki, J.-S.: Molecular detection, quantification, and diversity evaluation of microalgae. Mar. Biotechnol. 14, 129–142 (2012)

    Google Scholar 

  3. Trentacoste, E.M., Martinez, A.M., Zenk, T.: The place of algae in agriculture: policies for algal biomass production. Photosynth. Res. 123, 305–315 (2015)

    Google Scholar 

  4. de Jesus Raposo, M.F., de Morais, A.M.B., de Morais, R.M.S.C.: Marine polysaccharides from algae with potential biomedical applications. Mar. Drugs. 13, 2967–3028 (2015)

    Google Scholar 

  5. Ariede, M.B., Candido, T.M., Jacome, A.L.M., Velasco, M.V.R., de Carvalho, J.C.M., Baby, A.R.: Cosmetic attributes of algae: a review. Algal Res. 25, 483–487 (2017)

    Google Scholar 

  6. Hammed, A.M., Prajapati, S.K., Simsek, S., Simsek, H.: Growth regime and environmental remediation of microalgae. Algae 31, 189–204 (2016)

    Google Scholar 

  7. Zhang, B.Y., Geng, Y.H., Li, Z.K., Hu, H.J., Li, Y.G.: Production of astaxanthin from Haematococcus in open pond by two-stage growth one-step process. Aquaculture 295, 275–281 (2009)

    Google Scholar 

  8. Mojaat, M., Pruvost, J., Foucault, A., Legrand, J.: Effect of organic carbon sources and Fe2+ ions on growth and β-carotene accumulation by Dunaliella salina. Biochem. Eng. J. 39, 177–184 (2008)

    Google Scholar 

  9. Phadwal, K., Singh, P.K.: Isolation and characterization of an indigenous isolate of Dunaliella sp. for β-carotene and glycerol production from a hypersaline lake in India. J. Basic Microbiol. 43, 423–429 (2003)

    Google Scholar 

  10. Garbayo, I., Cuaresma, M., Vílchez, C., Vega, J.M.: Effect of abiotic stress on the production of lutein and β-carotene by Chlamydomonas acidophila. Process Biochem. 43, 1158–1161 (2008)

    Google Scholar 

  11. Padmaperuma, G., Kapoore, R.V., Gilmour, D.J., Vaidyanathan, S.: Microbial consortia: a critical look at microalgae co-cultures for enhanced biomanufacturing. Crit. Rev. Biotechnol. 0, 1–14 (2017)

    Google Scholar 

  12. Zhu, L.: Biorefinery as a promising approach to promote microalgae industry: an innovative framework. Renew. Sustain. Energy Rev. 41, 1376–1384 (2015)

    Google Scholar 

  13. Coppens, J., Grunert, O., Hende, S.V.D., Vanhoutte, I., Boon, N., Haesaert, G., Gelder, L.D.: The use of microalgae as a high-value organic slow-release fertilizer results in tomatoes with increased carotenoid and sugar levels. J. Appl. Phycol. 28, 2367–2377 (2016)

    Google Scholar 

  14. Wang, Y., Ho, S.-H., Cheng, C.-L., Guo, W.-Q., Nagarajan, D., Ren, N.-Q., Lee, D.-J., Chang, J.-S.: Perspectives on the feasibility of using microalgae for industrial wastewater treatment. Bioresour. Technol. 222, 485–497 (2016)

    Google Scholar 

  15. Wang, J.-H., Zhang, T.-Y., Dao, G.-H., Xu, X.-Q., Wang, X.-X., Hu, H.-Y.: Microalgae-based advanced municipal wastewater treatment for reuse in water bodies. Appl. Microbiol. Biotechnol. 101, 2659–2675 (2017)

    Google Scholar 

  16. Chen, G., Zhao, L., Qi, Y.: Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: a critical review. Appl. Energy 137, 282–291 (2015)

    Google Scholar 

  17. Yen, H.-W., Chen, P.-W., Chen, L.-J.: The synergistic effects for the co-cultivation of oleaginous yeast-Rhodotorula glutinis and microalgae-Scenedesmus obliquus on the biomass and total lipids accumulation. Bioresour. Technol. 184, 148–152 (2015)

    Google Scholar 

  18. Dong, Q.-L., Zhao, X.-M.: In situ carbon dioxide fixation in the process of natural astaxanthin production by a mixed culture of Haematococcus pluvialis and Phaffia rhodozyma. Catal. Today 98, 537–544 (2004)

    Google Scholar 

  19. Choi, K.-J., Han, T.H., Yoo, G., Cho, M.H., Hwang, S.-J.: Co-culture consortium of Scenedesmus dimorphus and nitrifiers enhances the removal of nitrogen and phosphorus from artificial wastewater. KSCE J. Civ. Eng. 1–7 (2017)

  20. Qi, W., Mei, S., Yuan, Y., Li, X., Tang, T., Zhao, Q., Wu, M., Wei, W., Sun, Y.: Enhancing fermentation wastewater treatment by co-culture of microalgae with volatile fatty acid- and alcohol-degrading bacteria. Algal Res. 31, 31–39 (2018)

    Google Scholar 

  21. Mujtaba, G., Lee, K.: Treatment of real wastewater using co-culture of immobilized Chlorella vulgaris and suspended activated sludge. Water Res. 120, 174–184 (2017)

    Google Scholar 

  22. Rivas, M.O., Vargas, P., Riquelme, C.E.: Interactions of Botryococcus braunii cultures with bacterial biofilms. Microb. Ecol. 60, 628–635 (2010)

    Google Scholar 

  23. De-Bashan, L.E., Bashan, Y., Moreno, M., Lebsky, V.K., Bustillos, J.J.: Increased pigment and lipid content, lipid variety, and cell and population size of the microalgae Chlorella spp. when co-immobilized in alginate beads with the microalgae-growth-promoting bacterium Azospirillum brasilense. Can. J. Microbiol. 48, 514–521 (2002)

    Google Scholar 

  24. Croft, M.T., Lawrence, A.D., Raux-Deery, E., Warren, M.J., Smith, A.G.: Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438, 90–93 (2005)

    Google Scholar 

  25. Chen, Z., Zhang, J., Lei, X., Zhang, B., Cai, G., Zhang, H., Li, Y., Zheng, W., Tian, Y., Xu, H., Zheng, T.: Influence of plaque-forming bacterium, Rhodobacteraceae sp. on the growth of Chlorella vulgaris. Bioresour. Technol. 169, 784–788 (2014)

    Google Scholar 

  26. Cheirsilp, B., Suwannarat, W., Niyomdecha, R.: Mixed culture of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for lipid production from industrial wastes and its use as biodiesel feedstock. New Biotechnol. 28, 362–368 (2011)

    Google Scholar 

  27. Papone, T., Kookkhunthod, S., Leesing, R.: Microbial oil production by monoculture and mixed cultures of microalgae and oleaginous yeasts using sugarcane juice as substrate. World Acad. Sci. Eng. Technol. 6, 899–903 (2012)

    Google Scholar 

  28. Santos, C.A., Caldeira, M.L., Lopes da Silva, T., Novais, J.M., Reis, A.: Enhanced lipidic algae biomass production using gas transfer from a fermentative Rhodosporidium toruloides culture to an autotrophic Chlorella protothecoides culture. Bioresour. Technol. 138, 48–54 (2013)

    Google Scholar 

  29. Xue, F., Miao, J., Zhang, X., Tan, T.: A new strategy for lipid production by mix cultivation of Spirulina platensis and Rhodotorula glutinis. Appl. Biochem. Biotechnol. 160, 498–503 (2010)

    Google Scholar 

  30. Puangbut, M., Leesing, R.: Integrated cultivation technique for microbial lipid production by photosynthetic microalgae and locally oleaginous yeast. World Acad. Sci. Eng. Technol. 6, 1170–1174 (2012)

    Google Scholar 

  31. Silva-Benavides, A.M., Torzillo, G.: Nitrogen and phosphorus removal through laboratory batch cultures of microalga Chlorella vulgaris and cyanobacterium Planktothrix isothrix grown as monoalgal and as co-cultures. J. Appl. Phycol. 24, 267–276 (2012)

    Google Scholar 

  32. Santos, C.A., Ferreira, M.E., Lopes, D.S., Gouveia, L., Novais, J.M., Reis, A.: A symbiotic gas exchange between bioreactors enhances microalgal biomass and lipid productivities: taking advantage of complementary nutritional modes. J. Ind. Microbiol. Biotechnol. 38, 909–917 (2011)

    Google Scholar 

  33. Liu, J., Wu, Y., Wu, C., Muylaert, K., Vyverman, W., Yu, H.-Q., Muñoz, R., Rittmann, B.: Advanced nutrient removal from surface water by a consortium of attached microalgae and bacteria: a review. Bioresour. Technol. 241, 1127–1137 (2017)

    Google Scholar 

  34. Higgins, B.T., VanderGheynst, J.S.: Effects of Escherichia coli on mixotrophic growth of Chlorella minutissima and production of biofuel precursors. PLoS ONE. 9, e96807 (2014)

    Google Scholar 

  35. Ling, J., Nip, S., Cheok, W.L., de Toledo, R.A., Shim, H.: Lipid production by a mixed culture of oleaginous yeast and microalga from distillery and domestic mixed wastewater. Bioresour. Technol. 173, 132–139 (2014)

    Google Scholar 

  36. Luo, S., Chen, B., Lin, L., Wang, X., Tam, N.F.-Y., Luan, T.: Pyrene degradation accelerated by constructed consortium of bacterium and microalga: effects of degradation products on the microalgal growth. Environ. Sci. Technol. 48, 13917–13924 (2014)

    Google Scholar 

  37. Moreno-Garrido, I.: Microalgae immobilization: current techniques and uses. Bioresour. Technol. 99, 3949–3964 (2008)

    Google Scholar 

  38. Cheirsilp, B., Kitcha, S., Torpee, S.: Co-culture of an oleaginous yeast Rhodotorula glutinis and a microalga Chlorella vulgaris for biomass and lipid production using pure and crude glycerol as a sole carbon source. Ann. Microbiol. 62, 987–993 (2012)

    Google Scholar 

  39. Bar-Zeev, E., Berman-Frank, I., Stambler, N., Dominguez, E., Zohary, T., Capuzzo, E., Meeder, E., Suggett, D.J., Iluz, D., Dishon, G., Berman, T.: Transparent exopolymer particles (TEP) link phytoplankton and bacterial production in the Gulf of Aqaba. In: Transparent exopolymer particles (TEP) link phytoplankton and bacterial production in the Gulf of Aqaba, pp. 217–225. ISRAEL, Eilat (2008)

    Google Scholar 

  40. Ryu, B.-G., Kim, E.J., Kim, H.-S., Kim, J., Choi, Y.-E., Yang, J.-W.: Simultaneous treatment of municipal wastewater and biodiesel production by cultivation of Chlorella vulgaris with indigenous wastewater bacteria. Biotechnol. Bioprocess Eng. 19, 201–210 (2014)

    Google Scholar 

  41. Corzo, A., Morillo, J.A., Rodriguez, S.: Production of transparent exopolymer particles (TEP) in cultures of Chaetoceros calcitrans under nitrogen limitation. Aquat. Microb. Ecol. 23, 63–72 (2000)

    Google Scholar 

  42. Villa, J.A., Ray, E.E., Barney, B.M.: Azotobacter vinelandii siderophore can provide nitrogen to support the culture of the green algae Neochloris oleoabundans and Scenedesmus sp. BA032. FEMS Microbiol. Lett. 351, 70–77 (2014)

    Google Scholar 

  43. Rashid, N., Ur Rehman, M.S., Sadiq, M., Mahmood, T., Han, J.-I.: Current status, issues and developments in microalgae derived biodiesel production. Renew. Sustain. Energy Rev. 40, 760–778 (2014)

    Google Scholar 

  44. Xie, S., Sun, S., Dai, S.Y., Yuan, J.S.: Efficient coagulation of microalgae in cultures with filamentous fungi. Algal Res. 2, 28–33 (2013)

    Google Scholar 

  45. Zoller, S., Lutzoni, F.: Slow algae, fast fungi: exceptionally high nucleotide substitution rate differences between lichenized fungi Omphalina and their symbiotic green algae Coccomyxa. Mol. Phylogenet. Evol. 29, 629–640 (2003)

    Google Scholar 

  46. Muñoz, R., Köllner, C., Guieysse, B., Mattiasson, B.: Photosynthetically oxygenated salicylate biodegradation in a continuous stirred tank photobioreactor. Biotechnol. Bioeng. 87, 797–803 (2004)

    Google Scholar 

  47. Gonçalves, A.L., Pires, J.C.M., Simões, M.: A review on the use of microalgal consortia for wastewater treatment. Algal Res. 24, 403–415 (2017)

    Google Scholar 

  48. Hama, S., Yamaji, H., Kaieda, M., Oda, M., Kondo, A., Fukuda, H.: Effect of fatty acid membrane composition on whole-cell biocatalysts for biodiesel-fuel production. Biochem. Eng. J. 21, 155–160 (2004)

    Google Scholar 

  49. Miranda, A.F., Taha, M., Wrede, D., Morrison, P., Ball, A.S., Stevenson, T., Mouradov, A.: Lipid production in association of filamentous fungi with genetically modified cyanobacterial cells. Biotechnol. Biofuels 8, 1–18 (2015)

    Google Scholar 

  50. Glibert, P.M., Burkholder, J.M., Kana, T.M.: Recent insights about relationships between nutrient availability, forms, and stoichiometry, and the distribution, ecophysiology, and food web effects of pelagic and benthic Prorocentrum species. Harmful Algae 14, 231–259 (2012)

    Google Scholar 

  51. Therien, J.B., Zadvornyy, O.A., Posewitz, M.C., Bryant, D.A., Peters, J.W.: Growth of Chlamydomonas reinhardtii in acetate-free medium when co-cultured with alginate-encapsulated, acetate-producing strains of Synechococcus sp. PCC 7002. Biotechnol. Biofuels 7, (2014)

  52. Amin, S.A., Green, D.H., Hart, M.C., Küpper, F.C., Sunda, W.G., Carrano, C.J.: Photolysis of iron–siderophore chelates promotes bacterial–algal mutualism. Proc. Natl. Acad. Sci. USA. 106, 17071–17076 (2009)

    Google Scholar 

  53. Vraspir, J.M., Butler, A.: Chemistry of marine ligands and siderophores. Annu. Rev. Mar. Sci. 1, 43–63 (2009)

    Google Scholar 

  54. Gledhill, M., Nimmo, M., Hill, S.J., Brown, M.T.: The release of copper-complexing ligands by the brown alga Fucus Vesiculosus (phaeophyceae) in response to increasing total copper levels. J. Phycol. 35, 501–509 (1999)

    Google Scholar 

  55. Moffett, J.W., Brand, L.E.: Production of strong, extracellular Cu chelators by marine cyanobacteria in response to Cu Stress. Limnol. Oceanogr. 41, 388–395 (1996)

    Google Scholar 

  56. Croot, P.L., Moffett, J.W., Brand, L.E.: Production of extracellular Cu complexing ligands by eucaryotic phytoplankton in response to Cu stress. Limnol. Oceanogr. 45, 619–627 (2000)

    Google Scholar 

  57. Leyva, L.A., Bashan, Y., Mendoza, A., de-Bashan, L.E.: Accumulation fatty acids of in Chlorella vulgaris under heterotrophic conditions in relation to activity of acetyl-CoA carboxylase, temperature, and co-immobilization with Azospirillum brasilense. Naturwissenschaften. 101, 819–830 (2014)

    Google Scholar 

  58. Wang, H., Tomasch, J., Jarek, M., Wagner-Döbler, I.: A dual-species co-cultivation system to study the interactions between Roseobacters and dinoflagellates. Front. Microbiol. 5, (2014)

  59. Paerl, R.W., Bertrand, E.M., Allen, A.E., Palenik, B., Azam, F.: Vitamin B1 ecophysiology of marine picoeukaryotic algae: strain-specific differences and a new role for bacteria in vitamin cycling. Limnol. Oceanogr. 60, 215–228 (2015)

    Google Scholar 

  60. Do Nascimento, M., de los Angeles Dublan, M., Ortiz-Marquez, J.C., Curatti, L.: High lipid productivity of an AnkistrodesmusRhizobium artificial consortium. Bioresour. Technol. 146, 400–407 (2013)

    Google Scholar 

  61. Krivosheeva, A.M., Buzoleva, L.S., Aizdaicher, N.A., Kuznetsova, T.A.: The stimulating effect of exometabolites of the marine microalgae Phaeodactylum tricornutum Bohlin on reproduction of Listeria monocytogenes. Biol. Bull. 42, 310–314 (2015)

    Google Scholar 

  62. De-Bashan, L.E., Antoun, H., Bashan, Y.: Involvement of indole-3-acetic acid produced by the growth-promoting bacterium Azospirillum spp. in promoting growth of Chlorella vulgaris. J. Phycol. 44, 938–947 (2008)

    Google Scholar 

  63. Wagner-Döbler, I., Ballhausen, B., Berger, M., Brinkhoff, T., Buchholz, I., Bunk, B., Cypionka, H., Daniel, R., Drepper, T., Gerdts, G., Hahnke, S., Han, C., Jahn, D., Kalhoefer, D., Kiss, H., Klenk, H.-P., Kyrpides, N., Liebl, W., Liesegang, H., Meincke, L., Pati, A., Petersen, J., Piekarski, T., Pommerenke, C., Pradella, S., Pukall, R., Rabus, R., Stackebrandt, E., Thole, S., Thompson, L., Tielen, P., Tomasch, J., von Jan, M., Wanphrut, N., Wichels, A., Zech, H., Simon, M.: The complete genome sequence of the algal symbiont Dinoroseobacter shibae: a hitchhiker’s guide to life in the sea. ISME J. 4, 61–77 (2010)

    Google Scholar 

  64. Salama, E.-S., Kabra, A.N., Ji, M.-K., Kim, J.R., Min, B., Jeon, B.-H.: Enhancement of microalgae growth and fatty acid content under the influence of phytohormones. Bioresour. Technol. 172, 97–103 (2014)

    Google Scholar 

  65. El Arroussi, H., Benhima, R., Bennis, I., El Mernissi, N., Wahby, I.: Improvement of the potential of Dunaliella tertiolecta as a source of biodiesel by auxin treatment coupled to salt stress. Renew. Energy. 77, 15–19 (2015)

    Google Scholar 

  66. Lu, Y., Xu, J.: Phytohormones in microalgae: a new opportunity for microalgal biotechnology? Trends Plant Sci. 20, 273–282 (2015)

    Google Scholar 

  67. Jusoh, M., Loh, S.H., Chuah, T.S., Aziz, A., Cha, T.S.: Indole-3-acetic acid (IAA) induced changes in oil content, fatty acid profiles and expression of four fatty acid biosynthetic genes in Chlorella vulgaris at early stationary growth phase. Phytochemistry. 111, 65–71 (2015)

    Google Scholar 

  68. Bagwell, C.E., Piskorska, M., Soule, T., Petelos, A., Yeager, C.M.: A diverse assemblage of indole-3-Acetic acid producing bacteria associate with unicellular green algae. Appl. Biochem. Biotechnol. 173, 1977–1984 (2014)

    Google Scholar 

  69. Stirk, W.A., Bálint, P., Tarkowská, D., Novák, O., Maróti, G., Ljung, K., Turečková, V., Strnad, M., Ördög, V., van Staden, J.: Effect of light on growth and endogenous hormones in Chlorella minutissima (Trebouxiophyceae). Plant Physiol. Biochem. 79, 66–76 (2014)

    Google Scholar 

  70. Hartung, W.: The evolution of abscisic acid (ABA) and ABA function in lower plants, fungi and lichen. Funct. Plant Biol. 37, 806–812 (2010)

    Google Scholar 

  71. Fu, S.-F., Wei, J.-Y., Chen, H.-W., Liu, Y.-Y., Lu, H.-Y., Chou, J.-Y.: Indole-3-acetic acid: a widespread physiological code in interactions of fungi with other organisms. Plant Signal. Behav. 10, e1048052 (2015)

    Google Scholar 

  72. Amin, S.A., Hmelo, L.R., van Tol, H.M., Durham, B.P., Carlson, L.T., Heal, K.R., Morales, R.L., Berthiaume, C.T., Parker, M.S., Djunaedi, B., Ingalls, A.E., Parsek, M.R., Moran, M.A., Armbrust, E.V.: Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature. 522, 98-U253 (2015)

    Google Scholar 

  73. Geng, H., Belas, R.: TdaA regulates tropodithietic acid synthesis by binding to the tdaC promoter region. J. Bacteriol. 193, 4002–4005 (2011)

    Google Scholar 

  74. Kagami, M., Van Donk, E., de Bruin, A., Rijkeboer, M., Ibelings, B.W.: Daphnia can protect diatoms from fungal parasitism. Limnol. Oceanogr. 49, 680–685 (2004)

    Google Scholar 

  75. Rasconi, S., Grami, B., Niquil, N., Jobard, M., Sime-Ngando, T.: Parasitic chytrids sustain zooplankton growth during inedible algal bloom. Front. Microbiol. 5, 229 (2014)

    Google Scholar 

  76. Song, C., Mazzola, M., Cheng, X., Oetjen, J., Alexandrov, T., Dorrestein, P., Watrous, J., van der Voort, M., Raaijmakers, J.M.: Molecular and chemical dialogues in bacteria-protozoa interactions. Sci. Rep. 5, 12837 (2015)

    Google Scholar 

  77. Zhang, Z., Ji, H., Gong, G., Zhang, X., Tan, T.: Synergistic effects of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for enhancement of biomass and lipid yields. Bioresour. Technol. 164, 93–99 (2014)

    Google Scholar 

  78. Katarzyna, L., Sai, G., Singh, O.A.: Non-enclosure methods for non-suspended microalgae cultivation: literature review and research needs. Renew. Sustain. Energy Rev. 42, 1418–1427 (2015)

    Google Scholar 

  79. Gultom, S., Hu, B.: Review of microalgae harvesting via co-pelletization with filamentous fungus. Energies 6, 5921–5939 (2013)

    Google Scholar 

  80. Zhou, W., Min, M., Hu, B., Ma, X., Liu, Y., Wang, Q., Shi, J., Chen, P., Ruan, R.: Filamentous fungi assisted bio-flocculation: a novel alternative technique for harvesting heterotrophic and autotrophic microalgal cells. Sep. Purif. Technol. 107, 158–165 (2013)

    Google Scholar 

  81. Wang, Y., Yang, Y., Ma, F., Xuan, L., Xu, Y., Huo, H., Zhou, D., Dong, S.: Optimization of Chlorella vulgaris and bioflocculant-producing bacteria co-culture: enhancing microalgae harvesting and lipid content. Lett. Appl. Microbiol. 60, 497–503 (2015)

    Google Scholar 

  82. Tan, L., Qiu, F., Lamport, D.T.A., Kieliszewski, M.J.: Structure of a hydroxyproline (Hyp)-arabinogalactan polysaccharide from repetitive Ala-Hyp expressed in transgenic Nicotiana tabacum. J. Biol. Chem. 279, 13156–13165 (2004)

    Google Scholar 

  83. Muradov, N., Taha, M., Miranda, A.F., Wrede, D., Kadali, K., Gujar, A., Stevenson, T., Ball, A.S., Mouradov, A.: Fungal-assisted algal flocculation: application in wastewater treatment and biofuel production. Biotechnol. Biofuels 8, 1–23 (2015)

    Google Scholar 

  84. Grima, E.M., Belarbi, E.-H., Fernández, F.A., Medina, A.R., Chisti, Y.: Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol. Adv. 20, 491–515 (2003)

    Google Scholar 

  85. Wrede, D., Taha, M., Miranda, A.F., Kadali, K., Stevenson, T., Ball, A.S., Mouradov, A.: Co-cultivation of fungal and microalgal cells as an efficient system for harvesting microalgal cells, lipid production and wastewater treatment. PLoS ONE. 9, e113497 (2014)

    Google Scholar 

  86. Danquah, M.K., Ang, L., Uduman, N., Moheimani, N., Forde, G.M.: Dewatering of microalgal culture for biodiesel production: exploring polymer flocculation and tangential flow filtration. J. Chem. Technol. Biotechnol. 84, 1078–1083 (2009)

    Google Scholar 

  87. Nasir, N.M., Bakar, N.S.A., Lananan, F., Hamid, S.H.A., Lam, S.S., Jusoh, A.: Treatment of African catfish, Clarias gariepinus wastewater utilizing phytoremediation of microalgae, Chlorella sp. with Aspergillus niger bio-harvesting. Bioresour. Technol. 190, 492–498 (2015)

    Google Scholar 

  88. Salim, S., Bosma, R., Vermuë, M.H., Wijffels, R.H.: Harvesting of microalgae by bio-flocculation. J. Appl. Phycol. 23, 849–855 (2011)

    Google Scholar 

  89. Powell, R.J., Hill, R.T.: Mechanism of algal aggregation by Bacillus sp strain RP1137. Appl. Environ. Microbiol. 80, 4042–4050 (2014)

    Google Scholar 

  90. Kearns, K.D., Hunter, M.D.: Toxin-producing Anabaena flos-aquae induces settling of Chlamydomonas reinhardtii, a competing motile alga. Microb. Ecol. 42, 80–86 (2001)

    Google Scholar 

  91. Granéli, E., Edvardsen, B., Roelke, D.L., Hagström, J.A.: The ecophysiology and bloom dynamics of Prymnesium spp. Harmful Algae 14, 260–270 (2012)

    Google Scholar 

  92. Prajapati, S.K., Kumar, P., Malik, A., Choudhary, P.: Exploring pellet forming filamentous fungi as tool for harvesting non-flocculating unicellular microalgae. BioEnergy Res. 7, 1430–1440 (2014)

    Google Scholar 

  93. Talukder, M.M.R., Das, P., Wu, J.C.: Immobilization of microalgae on exogenous fungal mycelium: a promising separation method to harvest both marine and freshwater microalgae. Biochem. Eng. J. 91, 53–57 (2014)

    Google Scholar 

  94. Alvarez-Diaz, P.D., Ruiz, J., Arbib, Z., Barragan, J., Garrido-Perez, C., Perales, J.A.: Factorial analysis of the biokinetic growth parameters and CO2 fixation rate of Chlorella vulgaris and Botryococcus braunii in wastewater and synthetic medium. Desalination Water Treat. 52, 4904–4914 (2014)

    Google Scholar 

  95. White, L.H., Martin, D.W., Witt, K.K., Vogt, F.: Impacts of nutrient competition on microalgae biomass production: impacts of nutrient competition on microalgae. J. Chemom. 28, 448–461 (2014)

    Google Scholar 

  96. Mahapatra, D.M., Chanakya, H.N., Ramachandra, T.V.: Bioremediation and lipid synthesis through mixotrophic algal consortia in municipal wastewater. Bioresour. Technol. 168, 142–150 (2014)

    Google Scholar 

  97. de Morais, P., Stoichev, T., Basto, M.C.P., Ramos, V., Vasconcelos, V.M., Vasconcelos, M.T.S.D.: Pentachlorophenol toxicity to a mixture of Microcystis aeruginosa and Chlorella vulgaris cultures. Aquat. Toxicol. 150, 159–164 (2014)

    Google Scholar 

  98. Shih, I.-L., Van, Y.-T.: The production of poly-(γ-glutamic acid) from microorganisms and its various applications. Bioresour. Technol. 79, 207–225 (2001)

    Google Scholar 

  99. Liang, Z., Liu, Y., Ge, F., Xu, Y., Tao, N., Peng, F., Wong, M.: Efficiency assessment and pH effect in removing nitrogen and phosphorus by algae-bacteria combined system of Chlorella vulgaris and Bacillus licheniformis. Chemosphere. 92, 1383–1389 (2013)

    Google Scholar 

  100. Kitcha, S., Cheirsilp, B.: Enhanced lipid production by co-cultivation and co-encapsulation of oleaginous yeast Trichosporonoides spathulata with microalgae in alginate gel beads. Appl. Biochem. Biotechnol. 173, 522–534 (2014)

    Google Scholar 

  101. Amaro, H.M., Guedes, A.C.: Antimicrobial activities of microalgae: an invited review. Sci Microb. Pathog. Commun. Curr. Res. Technol. Adv. 3, 1272–1284 (2011)

    Google Scholar 

  102. Wang, Y., Yu, Z., Song, X., Zhang, S.: Interactions between the bloom-forming dinoflagellates Prorocentrum donghaiense and Alexandrium tamarense in laboratory cultures. J. Sea Res. 56, 17–26 (2006)

    Google Scholar 

  103. Vardi, A., Schatz, D., Beeri, K., Motro, U., Sukenik, A., Levine, A., Kaplan, A.: Dinoflagellate-cyanobacterium communication may determine the composition of phytoplankton assemblage in a mesotrophic lake. Curr. Biol. 12, 1767–1772 (2002)

    Google Scholar 

  104. Berry, J.P.: Cyanobacterial toxins as allelochemicals with potential applications as algaecides, herbicides and insecticides. Mar. Drugs. 6, 117–146 (2008)

    Google Scholar 

  105. Gantar, M., Berry, J.P., Thomas, S., Wang, M., Perez, R., Rein, K.S.: Allelopathic activity among cyanobacteria and microalgae isolated from Florida freshwater habitats: allelopathy among cyanobacteria. FEMS Microbiol. Ecol. 64, 55–64 (2008)

    Google Scholar 

  106. Cho, J.Y.: Algicidal activity of marine Alteromonas sp. KNS-16 and isolation of active compounds. Biosci. Biotechnol. Biochem. 76, 1452–1458 (2012)

    Google Scholar 

  107. Paul, C., Pohnert, G.: Interactions of the algicidal bacterium Kordia algicida with diatoms: regulated protease excretion for specific algal lysis. PLoS ONE 6, e21032 (2011)

    Google Scholar 

  108. Mohamed, Z.A.: Toxic effect of norharmane on a freshwater plankton community. Ecohydrol. Hydrobiol. 13, 226–232 (2013)

    Google Scholar 

  109. Ribalet, F., Intertaglia, L., Lebaron, P., Casotti, R.: Differential effect of three polyunsaturated aldehydes on marine bacterial isolates. Aquat. Toxicol. 86, 249–255 (2008)

    Google Scholar 

  110. DellaGreca, M., Zarrelli, A., Fergola, P., Cerasuolo, M., Pollio, A., Pinto, G.: Fatty acids released by Chlorella vulgaris and their role in interference with Pseudokirchneriella subcapitata: experiments and modelling. J. Chem. Ecol. 36, 339–349 (2010)

    Google Scholar 

  111. Ianora, A., Bentley, M.G., Caldwell, G.S., Casotti, R., Cembella, A.D., Engström-Öst, J., Halsband, C., Sonnenschein, E., Legrand, C., Llewellyn, C.A., Paldavičienë, A., Pilkaityte, R., Pohnert, G., Razinkovas, A., Romano, G., Tillmann, U., Vaiciute, D.: The relevance of marine chemical ecology to plankton and ecosystem function: an emerging field. Mar. Drugs. 9, 1625–1648 (2011)

    Google Scholar 

  112. Moelling, K., Schulze, T., Diringer, H.: Inhibition of human immunodeficiency virus type 1 RNase H by sulfated polyanions. J. Virol. 63, 5489–5491 (1989)

    Google Scholar 

  113. Rechter, S., König, T., Auerochs, S., Thulke, S., Walter, H., Dörnenburg, H., Walter, C., Marschall, M.: Antiviral activity of Arthrospira-derived spirulan-like substances. Antiviral Res. 72, 197–206 (2006)

    Google Scholar 

  114. Teplitski, M.: Chlamydomonas reinhardtii secretes compounds that mimic bacterial signals and Interfere with quorum sensing regulation in bacteria. Plant Physiol. 134, 137–146 (2004)

    Google Scholar 

  115. Rajamani, S., Bauer, W.D., Robinson, J.B., Farrow, J.M., Pesci, E.C., Teplitski, M., Gao, M., Sayre, R.T., Phillips, D.A.: The vitamin riboflavin and its derivative lumichrome activate the LasR bacterial quorum-sensing receptor. Mol. Plant Microbe Interact. 21, 1184–1192 (2008)

    Google Scholar 

  116. Strom, S., Wolfe, G., Slajer, A., Lambert, S., Clough, J.: Chemical defense in the microplankton II: inhibition of protist feeding by β-dimethylsulfoniopropionate. Limnol Ocean 230–237 (2003)

  117. Venediktov, P.S., Krivoshejeva, A.A.: The mechanisms of fatty-acid inhibition of electron transport in chloroplasts. Planta 159, 411–414 (1983)

    Google Scholar 

  118. Chiang, I.Z., Huang, W.Y., Wu, J.T.: Allelochemicals of Botryococcus braunii (Chlorophyceae). J. Phycol. 40, 474–480 (2004)

    Google Scholar 

  119. Kok, Y.-Y., Chu, W.-L., Phang, S.-M., Mohamed, S.M., Naidu, R., Lai, P.-J., Ling, S.-N., Mak, J.-W., Lim, P.K.-C., Balraj, P., Khoo, A.S.-B.: Inhibitory activities of microalgal extracts against Epstein-Barr virus DNA release from lymphoblastoid cells. J. Zhejiang Univ. Sci. B. 12, 335–345 (2011)

    Google Scholar 

  120. Fabregas, J., García, D., Fernandez-Alonso, M., Rocha, A.I., Gómez-Puertas, P., Escribano, J.M., Otero, A., Coll, J.M.: In vitro inhibition of the replication of haemorrhagic septicaemia virus (VHSV) and African swine fever virus (ASFV) by extracts from marine microalgae. Antiviral Res. 44, 67–73 (1999)

    Google Scholar 

  121. Ger, K.A., Arneson, P., Goldman, C.R., Teh, S.J.: Species specific differences in the ingestion of microcystis cells by the calanoid copepods Eurytemora affinis and Pseudodiaptomus forbesi. J. Plankton Res. 32, 1479–1484 (2011)

    Google Scholar 

  122. Hong, J., Talapatra, S., Tester, P.A., Wagett, R.J., Place, A.R.: Algal toxins alter copepod feeding behavior. PLoS ONE 7, (2012)

    Google Scholar 

  123. Rengefors, K., Legrand, C.: Broad allelopathic activity in Peridinium aciculiferum (Dinophyceae). Eur. J. Phycol. 42, 341–349 (2007)

    Google Scholar 

  124. Yamasaki, Y., Nagasoe, S., Matsubara, T., Shikata, T., Shimasaki, Y., Oshima, Y., Honjo, T.: Growth inhibition and formation of morphologically abnormal cells of Akashiwo sanguinea (Hirasaka) G. Hansen et Moestrup by cell contact with Cochlodinium polykrikoides Margalef. Mar. Biol. 152, 157–163 (2007)

    Google Scholar 

  125. Uchida, T., Toda, S., Matsuyama, Y., Yamaguchi, M., Kotani, Y., Honjo, T.: Interactions between the red tide dinoflagellates Heterocapsa circularisquama and Gymnodinium mikimotoi in laboratory culture. J. Exp. Mar. Biol. Ecol. 241, 285–299 (1999)

    Google Scholar 

  126. Park, J.B.K., Craggs, R.J., Shilton, A.N.: Wastewater treatment high rate algal ponds for biofuel production. Bioresour. Technol. 102, 35–42 (2011)

    Google Scholar 

  127. Wang, H., Zhang, W., Chen, L., Wang, J., Liu, T.: The contamination and control of biological pollutants in mass cultivation of microalgae. Bioresour. Technol. 128, 745–750 (2013)

    Google Scholar 

  128. Unrein, F., Gasol, J.M., Not, F., Forn, I., Massana, R.: Mixotrophic haptophytes are key bacterial grazers in oligotrophic coastal waters. ISME J. 8, 164–176 (2014)

    Google Scholar 

  129. Zubkov, M.V., Tarran, G.A.: High bacterivory by the smallest phytoplankton in the North Atlantic Ocean. Nature 455, 224–226 (2008)

    Google Scholar 

  130. Zubkov, M.V., Mary, I., Woodward, E.M.S., Warwick, P.E., Fuchs, B.M., Scanlan, D.J., Burkill, P.H.: Microbial control of phosphate in the nutrient-depleted North Atlantic subtropical gyre. Environ. Microbiol. 9, 2079–2089 (2007)

    Google Scholar 

  131. Hansen, B., Bjornsen, P.K., Hansen, P.J.: The size ratio between planktonic predators and their prey. Limnol. Oceanogr. 39, 395–403 (1994)

    Google Scholar 

  132. Bird, D.F., Kalff, J.: Bacterial grazing by planktonic lake algae. Science. 231, 493–495 (1986)

    Google Scholar 

  133. Plötner, W.A., Hillebrand, H., Ptacnikova, R., Ptacnik, R.: Heterotrophic flagellates increase microalgal biomass yield. J. Appl. Phycol. 27, 87–96 (2014). https://doi.org/10.1007/s10811-014-0286-6

    Article  Google Scholar 

  134. Grami, B., Rasconi, S., Niquil, N., Jobard, M., Saint-Béat, B., Sime-Ngando, T.: Functional effects of parasites on food web properties during the spring diatom bloom in lake pavin: a linear inverse modeling analysis. PLoS ONE. 6, e23273 (2011)

    Google Scholar 

  135. Gutman, J., Zarka, A., Boussiba, S.: The host-range of Paraphysoderma sedebokerensis, a chytrid that infects Haematococcus pluvialis. Eur. J. Phycol. 44, 509–514 (2009)

    Google Scholar 

  136. Hanic, L.A., Sekimoto, S., Bates, S.S.: Oomycete and chytrid infections of the marine diatom Pseudo-nitzschia pungens (Bacillariophyceae) from Prince Edward Island, Canada. Bot.-Bot. 87, 1096–1105 (2009)

    Google Scholar 

  137. Malitsky, S., Ziv, C., Rosenwasser, S., Zheng, S., Schatz, D., Porat, Z., Ben-Dor, S., Aharoni, A., Vardi, A.: Viral infection of the marine alga Emiliania huxleyi triggers lipidome remodeling and induces the production of highly saturated triacylglycerol. New Phytol. 210, 88–96 (2016)

    Google Scholar 

  138. Kagami, M., de Bruin, A., Ibelings, B.W., Van Donk, E.: Parasitic chytrids: their effects on phytoplankton communities and food-web dynamics. Hydrobiologia 578, 113–129 (2007)

    Google Scholar 

  139. Gleason, F.H., Jephcott, T.G., Küpper, F.C., Gerphagnon, M., Sime-Ngando, T., Karpov, S.A., Guillou, L., van Ogtrop, F.F.: Potential roles for recently discovered chytrid parasites in the dynamics of harmful algal blooms. Fungal Biol. Rev. 29, 20–33 (2015)

    Google Scholar 

  140. Carney, L.T., Reinsch, S.S., Lane, P.D., Solberg, O.D., Jansen, L.S., Williams, K.P., Trent, J.D., Lane, T.W.: Microbiome analysis of a microalgal mass culture growing in municipal wastewater in a prototype OMEGA photobioreactor. Algal Res. 4, 52–61 (2014)

    Google Scholar 

  141. Carney, L.T., Lane, T.W.: Parasites in algae mass culture. Front. Microbiol. 5, (2014)

  142. Letcher, P.M., Lopez, S., Schmieder, R., Lee, P.A., Behnke, C., Powell, M.J., McBride, R.C.: Characterization of Amoeboaphelidium protococcarum, an algal parasite new to the cryptomycota Isolated from an outdoor algal pond used for the production of biofuel. PLoS ONE. 8, e56232 (2013)

    Google Scholar 

  143. Seyedsayamdost, M.R., Case, R.J., Case, R.J., Clardy, J.: The Jekyll-and-Hyde chemistry of Phaeobacter gallaeciensis. Nat. Chem. 3, 331–335 (2011)

    Google Scholar 

  144. Riclea, R., Gleitzmann, J., Bruns, H., Junker, C., Schulz, B., Dickschat, J.S.: Algicidal lactones from the marine Roseobacter clade bacterium Ruegeria pomeroyi. Beilstein J. Org. Chem. 8, 941–950 (2012)

    Google Scholar 

  145. Chen, W.-M., Sheu, F.-S., Sheu, S.-Y.: Aquimarina salinaria sp. nov., a novel algicidal bacterium isolated from a saltpan. Arch. Microbiol. 194, 103–112 (2011)

    Google Scholar 

  146. Wacker, A., Marzetz, V., Spijkerman, E.: Interspecific competition in phytoplankton drives the availability of essential mineral and biochemical nutrients. Ecology 96, 2467–2477 (2015)

    Google Scholar 

  147. Ma, X., Zhou, W., Fu, Z., Cheng, Y., Min, M., Liu, Y., Zhang, Y., Chen, P., Ruan, R.: Effect of wastewater-borne bacteria on algal growth and nutrients removal in wastewater-based algae cultivation system. Bioresour. Technol. 167, 8–13 (2014)

    Google Scholar 

  148. Qu, L., Wang, R., Zhao, P., Chen, R., Zhou, W., Tang, L., Tang, X.: Interaction between Chlorella vulgaris and bacteria: interference and resource competition. Acta Oceanol. Sin. 33, 135–140 (2014)

    Google Scholar 

  149. Grover, J.P.: Effects of Si:P supply ratio, supply variability, and selective grazing in the plankton: an experiment with a natural algal and protistan assemblage. Limnol. Oceanogr. 34, 349–367 (1989)

    Google Scholar 

  150. Tilman, D.: Resource competition and community structure. Monogr. Popul. Biol. 17, 1–296 (1981)

    Google Scholar 

  151. Flöder, S., Sommer, U.: Diversity in planktonic communities: an experimental test of the intermediate disturbance hypothesis. Limnol. Oceangr. 1114–1119 (1999)

    Google Scholar 

  152. Heifetz, P.B., Förster, B., Osmond, C.B., Giles, L.J., Boynton, J.E.: Effects of acetate on facultative autotrophy in Chlamydomonas reinhardtii assessed by photosynthetic measurements and stable isotope analyses. Plant Physiol. 122, 1439–1445 (2000)

    Google Scholar 

  153. Liang, Y., Sarkany, N., Cui, Y.: Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol. Lett. 31, 1043–1049 (2009)

    Google Scholar 

  154. Guo, Z., Tong, Y.W.: The interactions between Chlorella vulgaris and algal symbiotic bacteria under photoautotrophic and photoheterotrophic conditions. J. Appl. Phycol. 26, 1483–1492 (2014)

    Google Scholar 

  155. Ou, L., Huang, X., Huang, B., Qi, Y., Lu, S.: Growth and competition for different forms of organic phosphorus by the dinoflagellate Prorocentrum donghaiense with the dinoflagellate Alexandrium catenella and the diatom Skeletonema costatum s.l. Hydrobiologia. 754, 29–41 (2014)

    Google Scholar 

  156. Rhodes, C.J., Martin, A.P.: The influence of viral infection on a plankton ecosystem undergoing nutrient enrichment. J. Theor. Biol. 265, 225–237 (2010)

    MathSciNet  MATH  Google Scholar 

  157. Larsen, J.B., Larsen, A., Thyrhaug, R., Bratbak, G., Sandaa, R.-A.: Response of marine viral populations to a nutrient induced phytoplankton bloom at different pCO2 levels. Biogeosciences 5, 523–533 (2008)

    Google Scholar 

  158. Van de Waal, D.B., Verspagen, J.M., Finke, J.F., Vournazou, V., Immers, A.K., Kardinaal, W.E.A., Tonk, L., Becker, S., Van Donk, E., Visser, P.M., Huisman, J.: Reversal in competitive dominance of a toxic versus non-toxic cyanobacterium in response to rising CO2. ISME J. 5, 1438–1450 (2011)

    Google Scholar 

  159. Hom, E.F.Y., Murray, A.W.: Niche engineering demonstrates a latent capacity for fungal-algal mutualism. Science 345, 94–98 (2014)

    Google Scholar 

  160. Zhou, W., Cheng, Y., Li, Y., Wan, Y., Liu, Y., Lin, X., Ruan, R.: Novel fungal pelletization-assisted technology for algae harvesting and wastewater treatment. Appl. Biochem. Biotechnol. 167, 214–228 (2012)

    Google Scholar 

  161. Gultom, S.O., Zamalloa, C., Hu, B.: Microalgae harvest through fungal pelletization-Co-culture of Chlorella vulgaris and Aspergillus niger. Energies. 7, 4417–4429 (2014)

    Google Scholar 

  162. Bartley, M.L., Boeing, W.J., Dungan, B.N., Holguin, F.O., Schaub, T.: pH effects on growth and lipid accumulation of the biofuel microalgae Nannochloropsis salina and invading organisms. J. Appl. Phycol. 26, 1431–1437 (2013)

    Google Scholar 

  163. Litchman, E., Klausmeier, C.: Competition of phytoplankton under fluctuating light. Am. Nat. 157, 170–187 (2001)

    Google Scholar 

  164. Litchman, E.: Competition and coexistence of phytoplankton under fluctuating light: experiments with two cyanobacteria. Aquat. Microb. Ecol. 31, 241–248 (2003)

    Google Scholar 

  165. Gurung, T.B., Urabe, J., Nakanishi, M.: Regulation of the relationship between phytoplankton Scenedesmus acutus and heterotrophic bacteria by the balance of light and nutrients. Aquat. Microb. Ecol. 17, 27–35 (1999)

    Google Scholar 

  166. Jiang, Y.-J., He, W., Liu, W.-X., Qin, N., Ouyang, H.-L., Wang, Q.-M., Kong, X.-Z., He, Q.-S., Yang, C., Yang, B., Xu, F.-L.: The seasonal and spatial variations of phytoplankton community and their correlation with environmental factors in a large eutrophic Chinese lake (Lake Chaohu). Ecol. Indic. 40, 58–67 (2014)

    Google Scholar 

  167. Terekhova, V.E., Aizdaicher, N.A., Buzoleva, L.S., Somov, G.P.: Influence of extrametabolites of marine microalgae on the reproduction of the bacterium Listeria monocytogenes. Russ. J. Mar. Biol. 35, 355–358 (2009). https://doi.org/10.1134/S1063074009040129

    Article  Google Scholar 

  168. Seyedsayamdost, M.R., Wang, R., Kolter, R., Clardy, J.: Hybrid biosynthesis of Roseobacticides from algal and bacterial precursor molecules. J. Am. Chem. Soc. 136, 15150–15153 (2014)

    Google Scholar 

  169. Perez-Garcia, O., Escalante, F.M.E., de-Bashan, L.E., Bashan, Y.: Heterotrophic cultures of microalgae: metabolism and potential products. Water Res. 45, 11–36 (2011)

    Google Scholar 

  170. Assemany, P.P., Calijuri, M.L., do Couto, E., de Souza, M.H., Silva, N.C., Santiago, A., de Siqueira Castro J. Algae/bacteria consortium in high rate ponds: influence of solar radiation on the phytoplankton community. Ecol. Eng. 77, 154–162 (2015)

    Google Scholar 

  171. Marchello, A.E., Lombardi, A.T., Dellamano-Oliveira, M.J., de Souza, C.W.O., Marchello, A.E., Lombardi, A.T., Dellamano-Oliveira, M.J. Microalgae population dynamics in photobioreactors with secondary sewage effluent as culture medium. Braz. J. Microbiol. 46, 75–84 (2015)

    Google Scholar 

  172. Park, J.B.K., Craggs, R.J., Shilton, A.N.: Recycling algae to improve species control and harvest efficiency from a high rate algal pond. Water Res. 45, 6637–6649 (2011)

    Google Scholar 

  173. Nalley, J.O., Stockenreiter, M., Litchman, E.: Community ecology of algal biofuels: complementarity and trait-based approaches. Ind. Biotechnol. 10, 191–201 (2014)

    Google Scholar 

  174. Shurin, J.B., Mandal, S., Abbott, R.L.: Trait diversity enhances yield in algal biofuel assemblages. J. Appl. Ecol. 51, 603–611 (2014)

    Google Scholar 

  175. Bhattacharjee, M., Siemann, E.: Low algal diversity systems are a promising method for biodiesel production in wastewater fed open reactors. Algae 30, 67–79 (2015)

    Google Scholar 

  176. Stockenreiter, M., Haupt, F., Graber, A.-K., Seppälä, J., Spilling, K., Tamminen, T., Stibor, H.: Functional group richness: implications of biodiversity for light use and lipid yield in microalgae. J. Phycol. 49, 838–847 (2013)

    Google Scholar 

  177. Schmidtke, A., Gaedke, U., Weithoff, G.: A mechanistic basis for underyielding in phytoplankton communities. Ecology. 91, 212–221 (2010)

    Google Scholar 

  178. Cao, X., Zhou, Y., Wang, Z., Song, C.: The contribution of attached bacteria to microcystis bloom: evidence from field investigation and microcosm experiment. Geomicrobiol J. 0, 1–11 (2015)

    Google Scholar 

  179. Grognard, F., Masci, P., Benoît, E., Bernard, O.: Competition between phytoplankton and bacteria: exclusion and coexistence. J. Math. Biol. 70, 959–1006 (2014)

    MathSciNet  MATH  Google Scholar 

  180. Liang, Z., Liu, Y., Ge, F., Liu, N., Wong, M.: A pH-dependent enhancement effect of co-cultured Bacillus licheniformis on nutrient removal by Chlorella vulgaris. Ecol. Eng. 75, 258–263 (2015)

    Google Scholar 

  181. Cai, T., Park, S.Y., Li, Y.: Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew. Sustain. Energy Rev. 19, 360–369 (2013)

    Google Scholar 

  182. Su, Y., Mennerich, A., Urban, B.: Comparison of nutrient removal capacity and biomass settleability of four high-potential microalgal species. Bioresour. Technol. 124, 157–162 (2012)

    Google Scholar 

  183. Garbayo, I., Vigara, A.J., Conchon, V., Santos, V.A., Vílchez, C.: Nitrate consumption alterations induced by alginate-entrapment of Chlamydomonas reinhardtii cells. Process Biochem. 36, 459–466 (2000)

    Google Scholar 

  184. Li, Y., Horsman, M., Wang, B., Wu, N., Lan, C.Q.: Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl. Microbiol. Biotechnol. 81, 629–636 (2008)

    Google Scholar 

  185. Arumugam, M., Agarwal, A., Arya, M.C., Ahmed, Z.: Influence of nitrogen sources on biomass productivity of microalgae Scenedesmus bijugatus. Bioresour. Technol. 131, 246–249 (2013)

    Google Scholar 

  186. Hallenbeck, P.C., Grogger, M., Mraz, M., Veverka, D.: Building a better Mousetrap I: using design of experiments with unconfounded ions to discover superior media for growth and lipid production by Chlorella sp. EN1234. Bioresour. Technol. 184, 82–89 (2015)

    Google Scholar 

  187. Wu, L.F., Chen, P.C., Huang, A.P., Lee, C.M.: The feasibility of biodiesel production by microalgae using industrial wastewater. Bioresour. Technol. 113, 14–18 (2012)

    Google Scholar 

  188. Wang, L., Min, M., Li, Y., Chen, P., Chen, Y., Liu, Y., Wang, Y., Ruan, R.: Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl. Biochem. Biotechnol. 162, 1174–1186 (2009)

    Google Scholar 

  189. Manser, N.D., Wang, M., Ergas, S.J., Mihelcic, J.R., Mulder, A., van de Vossenberg, J., van Lier, J.B., van der Steen, P.: Biological nitrogen removal in a photosequencing batch reactor with an algal-nitrifying bacterial consortium and anammox granules. Environ. Sci. Technol. Lett. 3, 175–179 (2016)

    Google Scholar 

  190. Maza-Márquez, P., Martinez-Toledo, M.V., Fenice, M., Andrade, L., Lasserrot, A., Gonzalez-Lopez, J.: Biotreatment of olive washing wastewater by a selected microalgal-bacterial consortium. Int. Biodeterior. Biodegrad. 88, 69–76 (2014)

    Google Scholar 

  191. Ryu, B.-G., Kim, J., Farooq, W., Han, J.-I., Yang, J.-W., Kim, W.: Algal–bacterial process for the simultaneous detoxification of thiocyanate-containing wastewater and maximized lipid production under photoautotrophic/photoheterotrophic conditions. Bioresour. Technol. 162, 70–79 (2014)

    Google Scholar 

  192. Cho, D.-H., Ramanan, R., Heo, J., Lee, J., Kim, B.-H., Oh, H.-M., Kim, H.-S.: Enhancing microalgal biomass productivity by engineering a microalgal-bacterial community. Bioresour. Technol. 175, 578–585 (2015)

    Google Scholar 

  193. Wang, H., Hill, R.T., Zheng, T., Hu, X., Wang, B.: Effects of bacterial communities on biofuel-producing microalgae: stimulation, inhibition and harvesting. Crit. Rev. Biotechnol. 36, 341–352 (2016)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the National key research and development program-China (2016YFB0601003) and Natural Science Foundation of Tianjin (16JCYBJC20700).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun Qi or Guanyi Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Qi, Y., Zhao, L. et al. Interactions Between Microalgae and Microorganisms for Wastewater Remediation and Biofuel Production. Waste Biomass Valor 10, 3907–3919 (2019). https://doi.org/10.1007/s12649-018-0325-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0325-7

Keywords

Navigation