Skip to main content
Log in

Applicability of Fly Ash from Fluidized Bed Combustion of Peat, Wood, or Wastes to Concrete

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The chemical and physical characteristics of five different fly ashes originating from fluidized bed combustion of peat, wood, or different wastes were investigated to determine whether they fulfilled the requirements for concrete set by the European EN 450-1 standard. Fly ash originating mostly from peat combustion fulfilled all the requirements of the EN 450-1 standard, without any treatments. Some chemical and physical characteristics (i.e., free calcium oxide, sulfate, chloride, and fineness) of the other types of fly ash exceeded the limits in standard, and the sum of the main components (SiO2, Al2O3, and Fe2O3) failed to comply with the standard. However, it should be noted that the requirements of the European standard are more restrictive than similar standards in the US; all applications are not needing standardized concrete, and the potential utility of the studied fly ash materials could be improved by mechanical treatments.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. European Commission: Communication from the commission to the European Parliament, The Council, The European Economic and Social Committee and the Committee of the Regions. A Policy Framework for Climate and Energy in the Period from 2020 to 2030. European Commission, Brussels (2014)

    Google Scholar 

  2. Patel, A., Basu, P., Acharya, B.: An investigation into partial capture of CO2 released from a large coal/petcoke fired circulating fluidized bed boiler with limestone injection using its fly and bottom ash. J. Environ. Chem. Eng. 5, 667–678 (2017). https://doi.org/10.1016/j.jece.2016.12.047

    Article  Google Scholar 

  3. Dash, M.K., Patro, S.K., Rath, A.K.: Sustainable use of industrial-waste as partial replacement of fine aggregate for preparation of concrete—a review. Int. J. Sustain. Built Environ. 5, 484–516 (2016). https://doi.org/10.1016/j.ijsbe.2016.04.006

    Article  Google Scholar 

  4. Gartner, E.: Industrially interesting approaches to “low-CO2” cements. Cem. Concr. Res. 34, 1489–1498 (2004). https://doi.org/10.1016/j.cemconres.2004.01.021

    Article  Google Scholar 

  5. Liew, K.M., Sojobi, A.O., Zhang, L.W.: Green concrete: prospects and challenges. Constr. Build. Mater. 156, 1063–1095 (2017). https://doi.org/10.1016/j.conbuildmat.2017.09.008

    Article  Google Scholar 

  6. Rashad, A.M.: A brief on high-volume class F fly ash as cement replacement—a guide for civil engineer. Int. J. Sustain. Built Environ. 4, 278–306 (2015). https://doi.org/10.1016/j.ijsbe.2015.10.002

    Article  Google Scholar 

  7. Ohenoja, K., Körkkö, M., Wigren, V., Österbacka, J., Illikainen, M.: Fly ash classification efficiency of electrostatic precipitators in fluidized bed combustion of peat, wood, and forest residues. J. Environ. Manag. 206, 607–614 (2018). https://doi.org/10.1016/j.jenvman.2017.10.047

    Article  Google Scholar 

  8. Ohenoja, K., Tanskanen, P., Peltosaari, O., Wigren, V., Österbacka, J., Illikainen, M.: Effect of particle size distribution on the self-hardening property of biomass-peat fly ash from a bubbling fluidized bed combustion. Fuel Process. Technol. 148, 60–66 (2016). https://doi.org/10.1016/j.fuproc.2016.02.023

    Article  Google Scholar 

  9. Ohenoja, K., Tanskanen, P., Wigren, V., Kinnunen, P., Körkkö, M., Peltosaari, O., Österbacka, J., Illikainen, M.: Self-hardening of fly ashes from a bubbling fluidized bed combustion of peat, forest industry residuals, and wastes. Fuel. (2016). https://doi.org/10.1016/j.fuel.2015.10.093

    Article  Google Scholar 

  10. Barbosa, R., Lapa, N., Dias, D., Mendes, B.: Concretes containing biomass ashes: mechanical, chemical, and ecotoxic performances. Constr. Build. Mater. 48, 457–463 (2013). https://doi.org/10.1016/j.conbuildmat.2013.07.031

    Article  Google Scholar 

  11. Berra, M., Mangialardi, T., Paolini, A.E.: Reuse of woody biomass fly ash in cement-based materials. Constr. Build. Mater. 76, 286–296 (2015). https://doi.org/10.1016/j.conbuildmat.2014.11.052

    Article  Google Scholar 

  12. Cheah, C.B., Ramli, M.: The implementation of wood waste ash as a partial cement replacement material in the production of structural grade concrete and mortar: an overview. Resour. Conserv. Recycl. 55, 669–685 (2011). https://doi.org/10.1016/j.resconrec.2011.02.002

    Article  Google Scholar 

  13. Cuenca, J., Rodríguez, J., Martín-Morales, M., Sánchez-Roldán, Z., Zamorano, M.: Effects of olive residue biomass fly ash as filler in self-compacting concrete. Constr. Build. Mater. 40, 702–709 (2013). https://doi.org/10.1016/j.conbuildmat.2012.09.101

    Article  Google Scholar 

  14. Elinwa, A.U., Mahmood, Y.A.: Ash from timber waste as cement replacement material. Cem. Concr. Compos. 24, 219–222 (2002). https://doi.org/10.1016/S0958-9465(01)00039-7

    Article  Google Scholar 

  15. Kaminskas, R., Cesnauskas, V.: Influence of activated biomass fly ash on portland cement hydration. Ceram. Silik. 58, 260–268 (2014)

    Google Scholar 

  16. Lessard, J.-M., Omran, A., Tagnit-Hamou, A., Gagné, R.: Production of RCC using biomass fly and bottom ashes: from laboratory to fieldwork. J. Mater. Civ. Eng. (2017). https://doi.org/10.1061/(ASCE)MT.1943-5533.0002074

    Article  Google Scholar 

  17. Rajamma, R., Senff, L., Ribeiro, M.J., Labrincha, J.A., Ball, R.J., Allen, G.C., Ferreira, V.M.: Biomass fly ash effect on fresh and hardened state properties of cement based materials. Compos. Part B Eng. 77, 1–9 (2015). https://doi.org/10.1016/j.compositesb.2015.03.019

    Article  Google Scholar 

  18. Rajamma, R., Ball, R., Tarelho, L., Allen, G., Labrincha, J., Ferreira, V.: Characterisation and use of biomass fly ash in cement-based materials. J. Hazard. Mater. 172, 1049–1060 (2009)

    Article  Google Scholar 

  19. Ramos, T., Matos, A.M., Sousa-Coutinho, J.: Mortar with wood waste ash: mechanical strength carbonation resistance and ASR expansion. Constr. Build. Mater. 49, 343–351 (2013). https://doi.org/10.1016/j.conbuildmat.2013.08.026

    Article  Google Scholar 

  20. Rissanen, J., Ohenoja, K., Kinnunen, P., Illikainen, M.: Partial replacement of Portland-composite cement by fluidized bed combustion fly ash. J. Mater. Civ. Eng. (2017). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001899

    Article  Google Scholar 

  21. Sinsiri, T., Kroehong, W., Jaturapitakkul, C., Chindaprasirt, P.: Assessing the effect of biomass ashes with different finenesses on the compressive strength of blended cement paste. Mater. Des. 42, 424–433 (2012). https://doi.org/10.1016/j.matdes.2012.06.030

    Article  Google Scholar 

  22. Teixeira, E.R., Mateus, R., Camões, A.F., Bragança, L., Branco, F.G.: Comparative environmental life-cycle analysis of concretes using biomass and coal fly ashes as partial cement replacement material. J. Clean. Prod. 112(4), 2221–2230 (2016). https://doi.org/10.1016/j.jclepro.2015.09.124

    Article  Google Scholar 

  23. Udoeyo, F.F., Inyang, H., Young, D.T., Oparadu, E.E.: Potential of wood waste ash as an additive in concrete. J. Mater. Civ. Eng. 18, 605–611 (2006). https://doi.org/10.1061/(ASCE)0899-1561(2006)18:4(605)

    Article  Google Scholar 

  24. Udoeyo, F.F., Dashibil, P.U.: Sawdust ash as concrete material. J. Mater. Civ. Eng. 14, 173 (2002)

    Article  Google Scholar 

  25. Wang, S., Baxter, L., Fonseca, F.: Biomass fly ash in concrete: SEM, EDX and ESEM analysis. Fuel. 87, 372–379 (2008). https://doi.org/10.1016/j.fuel.2007.05.024

    Article  Google Scholar 

  26. ASTM, C.: 618-12a: Standard specification for coal fly ash and raw or calcined natural pozzolan for use as a mineral admixture in concrete. http://blocksjordan.net/Portals/0/C%20618%20-%2000%20%20_QZYXOC0WMA__.pdf. (2012)

  27. SFS-EN: 450-1:en: Fly Ash for Concrete. Definition, Specifications and Conformity Criteria. British Standards Institution, London (2005)

    Google Scholar 

  28. Doudart de la Grée, G.C.H., Florea, M.V.A., Keulen, A., Brouwers, H.J.H.: Contaminated biomass fly ashes—characterization and treatment optimization for reuse as building materials. Waste Manag. 49, 96–109 (2016). https://doi.org/10.1016/j.wasman.2015.12.023

    Article  Google Scholar 

  29. Sarabèr, A.J.: Co-combustion and its impact on fly ash quality; full-scale experiments. Fuel Process. Technol. 128, 68–82 (2014). https://doi.org/10.1016/j.fuproc.2014.06.026

    Article  Google Scholar 

  30. Wang, S.: Compressive strengths of mortar cubes from hydrated lime with cofired biomass fly ashes. Constr. Build. Mater. 50, 414–420 (2014). https://doi.org/10.1016/j.conbuildmat.2013.09.045

    Article  Google Scholar 

  31. Wang, S., Llamazos, E., Baxter, L., Fonseca, F.: Durability of biomass fly ash concrete: freezing and thawing and rapid chloride permeability tests. Fuel. 87, 359–364 (2008). https://doi.org/10.1016/j.fuel.2007.05.027

    Article  Google Scholar 

  32. SFS-EN 451-1: Method of Testing Fly Ash- Part 1: Determination of Free Calcium Oxide. (2004)

  33. EN 196-1: Methods of Testing Cement. Determination of Strength. (2016)

  34. EN 1015-3: Methods of Test for Mortar for Masonry. Determination of Consistence of Fresh Mortar (by flow table). European Committee for Standardization (1999)

  35. Demeyer, A., Voundi Nkana, J., Verloo, M.: Characteristics of wood ash and influence on soil properties and nutrient uptake: an overview. Bioresour. Technol. 77, 287–295 (2001). https://doi.org/10.1016/S0960-8524(00)00043-2

    Article  Google Scholar 

  36. Latva-Somppi, J., Moisio, M., Kauppinen, E.I., Valmari, T., Ahonen, P., Tapper, U., Keskinen, J.: Ash formation during fluidized-bed incineration of paper mill waste sludge. J. Aerosol Sci. 29, 461–480 (1998). https://doi.org/10.1016/S0021-8502(97)00291-7

    Article  Google Scholar 

  37. Obernberger, I.: Decentralized biomass combustion: state of the art and future development. Biomass Bioenergy. 14, 33–56 (1998). https://doi.org/10.1016/S0961-9534(97)00034-2

    Article  Google Scholar 

  38. Werkelin, J.: Ash forming elements and their chemical forms in woody biomass fuels, Ph. D. thesis, Abo Akademi (2008)

  39. Steenari, B.-M., Lindqvist, O.: Fly ash characteristics in co-combustion of wood with coal, oil or peat. Fuel. 78, 479–488 (1999). https://doi.org/10.1016/S0016-2361(98)00177-X

    Article  Google Scholar 

  40. Leiva, C., Vilches, L.F., Vale, J., Olivares, J., Fernández-Pereira, C.: Effect of carbonaceous matter contents on the fire resistance and mechanical properties of coal fly ash enriched mortars. Fuel. 87, 2977–2982 (2008). https://doi.org/10.1016/j.fuel.2008.04.020

    Article  Google Scholar 

  41. Atiş, C.D., Kiliç, A., Sevim, U.K.: Strength and shrinkage properties of mortar containing a nonstandard high-calcium fly ash. Cem. Concr. Res. 34, 99–102 (2004). https://doi.org/10.1016/S0008-8846(03)00247-3

    Article  Google Scholar 

  42. Papadakis, V.G.: Effect of fly ash on Portland cement systems: part II. High-calcium fly ash. Cem. Concr. Res. 30, 1647–1654 (2000). https://doi.org/10.1016/S0008-8846(00)00388-4

    Article  Google Scholar 

  43. Kaewmanee, K., Krammart, P., Sumranwanich, T., Choktaweekarn, P., Tangtermsirikul, S.: Effect of free lime content on properties of cement–fly ash mixtures. Constr. Build. Mater. 38, 829–836 (2013). https://doi.org/10.1016/j.conbuildmat.2012.09.035

    Article  Google Scholar 

  44. Junsomboon, J., Jakmunee, J.: Determination of potassium, sodium, and total alkalies in Portland cement, fly ash, admixtures, and water of concrete by a simple flow injection flame photometric system. https://www.hindawi.com/journals/jamc/2011/742656/. (2011)

  45. Cyr, M., Lawrence, P., Ringot, E.: Efficiency of mineral admixtures in mortars: quantification of the physical and chemical effects of fine admixtures in relation with compressive strength. Cem. Concr. Res. 36, 264–277 (2006). https://doi.org/10.1016/j.cemconres.2005.07.001

    Article  Google Scholar 

  46. Wang, A., Zhang, C., Sun, W.: Fly ash effects: I. The morphological effect of fly ash. Cem. Concr. Res. 33, 2023–2029 (2003). https://doi.org/10.1016/S0008-8846(03)00217-5

    Article  Google Scholar 

  47. Illikainen, M., Tanskanen, P., Kinnunen, P., Körkkö, M., Peltosaari, O., Wigren, V., Österbacka, J., Talling, B., Niinimäki, J.: Reactivity and self-hardening of fly ash from the fluidized bed combustion of wood and peat. Fuel. 135, 69–75 (2014). https://doi.org/10.1016/j.fuel.2014.06.029

    Article  Google Scholar 

  48. Sheng, G., Li, Q., Zhai, J.: Investigation on the hydration of CFBC fly ash. Fuel. 98, 61–66 (2012). https://doi.org/10.1016/j.fuel.2012.02.008

    Article  Google Scholar 

  49. Kalla, P., Misra, A., Gupta, R.C., Csetenyi, L., Gahlot, V., Arora, A.: Mechanical and durability studies on concrete containing wollastonite–fly ash combination. Constr. Build. Mater. 40, 1142–1150 (2013). https://doi.org/10.1016/j.conbuildmat.2012.09.102

    Article  Google Scholar 

  50. Brandštetr, J., Havlica, J., Odler, I.: Properties and use of solid residue from fluidized bed coal combustion. In: Chandra, S. (ed.) Waste Materials Used in Concrete Manufacturing, pp. 1–52. William Andrew Publishing, Westwood, NJ (1996)

    Google Scholar 

  51. Antoni, M., Rossen, J., Martirena, F., Scrivener, K.: Cement substitution by a combination of metakaolin and limestone. Cem. Concr. Res. 42, 1579–1589 (2012). https://doi.org/10.1016/j.cemconres.2012.09.006

    Article  Google Scholar 

  52. Lanzerstorfer, C.: Cyclone fly ash from a grate-fired biomass combustion plant: Dependence of the concentration of various components on the particle size. Fuel Process. Technol. 131, 382–388 (2015). https://doi.org/10.1016/j.fuproc.2014.12.010

    Article  Google Scholar 

  53. Van de Velden, M., Dewil, R., Baeyens, J., Josson, L., Lanssens, P.: The distribution of heavy metals during fluidized bed combustion of sludge (FBSC). J. Hazard. Mater. 151, 96–102 (2008). https://doi.org/10.1016/j.jhazmat.2007.05.056

    Article  Google Scholar 

  54. Orava, H., Nordman, T., Kuopanportti, H.: Increase the utilisation of fly ash with electrostatic precipitation. Miner. Eng. 19, 1596–1602 (2006). https://doi.org/10.1016/j.mineng.2006.07.002

    Article  Google Scholar 

  55. Zhang, T.-S., Yu, Q.-J., Wei, J.-X., Zhang, P.-P.: Effect of size fraction on composition and pozzolanic activity of high calcium fly ash. Adv. Cem. Res. 23, 299–307 (2011). https://doi.org/10.1680/adcr.2011.23.6.299

    Article  Google Scholar 

  56. Camerani, M.C., Steenari, B.-M., Sharma, R., Beckett, R.: Cd speciation in biomass fly ash particles after size separation by centrifugal SPLITT. Fuel. 81, 1739–1753 (2002). https://doi.org/10.1016/S0016-2361(02)00092-3

    Article  Google Scholar 

  57. Itskos, G., Itskos, S., Koukouzas, N.: Size fraction characterization of highly-calcareous fly ash. Fuel Process. Technol. 91, 1558–1563 (2010). https://doi.org/10.1016/j.fuproc.2010.06.002

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Finnish Funding Agency for Technology and Innovation and the following Finnish companies: Boliden Harjavalta Oy, Ekokem Palvelu Oy, Fortum Power and Heat Oy, Helen Oy, Jyväskylän Energia Oy, Kemira Chemicals Oy, Metsä Board Oyj, Napapiirin Energia ja Vesi Oy, Nordkalk Oy Ab, Paroc Group Oy, SSAB Europe Oy, Stora Enso Oyj, UPM-Kymmene Oyj, and Valmet Technologies Oy. We would like to thank Dr. Mika Körkkö for experimental design and interpretation of the results and Mr. Jarno Karvonen, Mr. Jani Österlund, and MSc. Jouni Rissanen for their contributions to the laboratory work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja Ohenoja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohenoja, K., Wigren, V., Österbacka, J. et al. Applicability of Fly Ash from Fluidized Bed Combustion of Peat, Wood, or Wastes to Concrete. Waste Biomass Valor 10, 3525–3534 (2019). https://doi.org/10.1007/s12649-018-0319-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0319-5

Keywords

Navigation