Skip to main content

Advertisement

Log in

Modeling of Thermochemical Conversion of Glycerol: Pyrolysis and H2O and CO2 Gasification

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Glycerol is the byproduct of biodiesel production. Biodiesel has been considered a strong alternative candidate to petro diesel. Stoichiometrically, one mole of glycerol is generated during the conversion of one mole of triglyceride feedstock or per three produced moles of biodiesel. This an equivalent to 10–15% byproduct volume/mass. The biodiesel production has observed a huge jump in production, being preserved as a renewable, sustainable and near CO2 neutral source. This is driven by advances in technology of 1st generation biomass lipid harvesting and advancement of 3rd generation breeding and maximizing algae lipids and their extraction. Therefore, a sound solution for velarizing the glycerol byproduct is becoming a necessity before it is viewed as waste burden. Currently, the glycerol market is saturated and substantial production can lead to an economic imbalance. Therefore, satisfying the energy needs following thermochemical conversion of glycerol into clean syngas fuel is a more favorable and dual solution to the problem, i.e. reducing process waste and generating clean fuel. In this work, the process metrics in using Glycerol as feedstock for the production of syngas fuel is evaluated under pyrolysis then gasification under steam (H2O(g)) and CO2 moderators. Process metrics are assessed using the syngas mole fractions and their normalized value termed as the cold gasification efficiency. The analysis followed equilibrium modeling based on Gibbs Energy Minimization and under sweeping reaction temperatures. The model is validated against experimental literature. Result of glycerol pyrolysis achieved a maximum of 83% at 0.43 CO and 0.57 H2 mole fraction. Glycerol gasification under steam moderator resulted in a slightly higher efficiency of 84% and 0.20 CO and 0.55 H2 mole fractions, while under CO2 moderator resulted in a lower efficiency of 80% and 0.40 CO and 0.30 H2 mole fractions. This emphasizes the technical feasibility of thermochemical conversion of glycerol into clean syngas and closes the loop of biodiesel production towards zero byproduct process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abuadala, A., Dincer, I., Naterer, G.: Exergy analysis of hydrogen production from biomass gasification. Int. J. Hydrog. Energy 35(10), 4981–4990 (2010)

    Article  Google Scholar 

  2. Adeyemi, I., Janajreh, I., Arink, T., Ghenai, C.: Gasification behavior of coal and woody biomass: validation and parametrical study. Appl. Energy 185(2), 1007–1018 (2017)

    Article  Google Scholar 

  3. Adhikari, S., Fernando, S., Gwaltney, S., Filip To, S., Bricka, R., Steele, P., Haryanto, A.: A thermodynamic analysis of hydrogen production by steam reforming of glycerol. Int. J. Hydrog. Energy 32(14), 2875–2880 (2007)

    Article  Google Scholar 

  4. Adhikari, S., Fernando, S., Haryanto, A.: Hydrogen pro- duction from glycerol: an update. Energy Convers. Manag. 50(10), 2600–2604 (2009)

    Article  Google Scholar 

  5. Ahmed, I., Gupta, A.K.: Kinetics of woodchips char gasification with steam and carbon dioxide. Appl. Energy 88(5), 1613–1619 (2011)

    Article  Google Scholar 

  6. Argonne National Laboratory: Greet, the greenhouse gases, regulated emissions, and energy use in transportation model (2010). http://greet.es.anl.gov/

  7. Baig, A., Flora, T.: A single-step solid acid-catalyzed process for the production of biodiesel from high free fatty acid feedstocks. Energy Fuels 24(9), 4712–4720 (2010)

    Article  Google Scholar 

  8. Chen, C., Horio, M., Kojima, T.: Chem. Eng. Sci. 55(18), 3861–3874 (2000)

    Article  Google Scholar 

  9. Chen, C., Wang, J., Liu, W., Zhang, S., Yin, J., Luo, G., Yao, H.: Effect of pyrolysis conditions on the char gasification with mixtures of CO2 and H2O. Proc. Combust. Inst. 34(2), 2453–2460 (2013)

    Article  Google Scholar 

  10. Ciriminna, R., Pina, C., Rossi, M., Pagliaro, M.: Understanding the glycerol market. Eur. J. Lipid Sci. Technol. 116(10), 1432–1439 (2014). https://doi.org/10.1002/ejlt.201400229

    Article  Google Scholar 

  11. Dou, B., Dupont, V., Williams, P., Chen, H., Ding, Y.: Thermogravimetric kinetics of crude glycerol. Bioresour. Technol. 100(9), 2613–2620 (2009)

    Article  Google Scholar 

  12. Goodwin, D., Moffat, H., Speth, R.: Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes (Version 2.2.0) (2015). http://www.cantera.org

  13. Gupta, M., Kumar, N.: Scope and opportunities of using glycerol as an energy source. Renew. Sustain. Energy Rev. 16(7), 4551–4556 (2012)

    Article  Google Scholar 

  14. Ortiz, F., Ollero, P., Serrera, A., Sanz, A.: Thermodynamic study of the supercritical water reforming of glycerol. Int. J. Hydrog. Energy 36(15), 8994–9013 (2011). https://doi.org/10.1016/j.ijhydene.2011.04.095

    Article  Google Scholar 

  15. Hirai, T., Ikenaga, N., Miyake, T., Suzuki, T.: Production of hydrogen by steam reforming of glycerin on ruthenium catalyst. Energy Fuels 19(4), 1761–1762 (2005)

    Article  Google Scholar 

  16. Hussain, M.N., Samad, T., Janajreh, I.: Economic feasibility of biodiesel production from waste cooking oil in the UAE, Sustain. Cities Soc. 26, 217–226 (2016)

    Article  Google Scholar 

  17. Hussain, M.N., Janajreh, I.: Acousto-chemical analysis in multi-transducer sonochemical reactors for biodiesel production. Ultrason. Sonochem. 40, 184–193 (2018)

    Article  Google Scholar 

  18. Hussain, M.N., Janajreh, I.: Numerical simulation and experimental testing of novel sonochemical reactor for transesterification. Waste Biomass Valoriz. 8, 1733–1747 (2017)

    Article  Google Scholar 

  19. Janajreh, I., ElSamad, T., Hussain, M.N.: Intensification of transesterification via sonication numerical simulation and sensitivity study. Appl. Energy 185, 2151–2159 (2016)

    Article  Google Scholar 

  20. Jarungthammachote, S., Dutta, A.: Thermodynamic equilibrium model and second law analysis of a downdraft waste gasifier. Energy 32(9), 1660–1669 (2007). https://doi.org/10.1016/j.energy.2007.01.010

    Article  Google Scholar 

  21. Li, X., Grace, J.R., Watkinson, A.P., Lim, C.J., Ergüdenler, A.: Equilibrium modeling of gasification: a free energy minimization approach and its application to a circulating fluidized bed coal gasifier. Fuel 80(2), 195–207 (2004)

    Article  Google Scholar 

  22. Mazzoni, L., Janajreh, I.: Plasma gasification of municipal solid waste with variable content of plastic solid waste for enhanced energy recovery. Int. J. Hydrog. Energy 42(30), 19446–19457 (2017)

    Article  Google Scholar 

  23. Ma, F., Hanna, M.A.: Biodiesel production: a review. Biores. Technol. 70, 1–15 (1999)

    Article  Google Scholar 

  24. Mangayil, R., Karp, M., Santala, V.: Bioconversion of crude glycerol from biodiesel production to hydrogen. Int. J. Hydrog. Energy 37(17), 12198–12204 (2012)

    Article  Google Scholar 

  25. Melgar, A., Péreza, J., Laget, H., Horillo, A.: Thermochemical equilibrium modelling of a gasifying process. Energy Convers. Manag. 48(1), 59–67 (2006). https://doi.org/10.1016/j.enconman.2006.05.004

    Article  Google Scholar 

  26. Mountouris, A., Voutsas, E., Tassios, D.: Solid waste plasma gasification: equilibrium model development and exergy analysis. Energy Convers. Manag. 47(13–14), 1723–1737 (2006). https://doi.org/10.1016/j.enconman.2005.10.015

    Article  Google Scholar 

  27. Nanda, M., Yuan, Z., Qin, W., Poirier, M., Chunbao, X.: Purification of crude glycerol using acidification: effects of acid types and product characterization. Austin J. Chem. Eng. 1, 1–7 (2014)

    Google Scholar 

  28. National Biodiesel Board. http://biodiesel.org/pdf_files/emissions.pdf. Accessed 9 Aug 2004

  29. Pott, R.W.M., Howe, C.J., Dennis, J.S.: The purification of crude glycerol derived from biodiesel manufacture and its use as a substrate by Rhodopseudomonas palustris to produce hydrogen. Biores. Technol. 152, 464–470 (2014)

    Article  Google Scholar 

  30. Ptasinski, K., Prins, M., Pierik, A.: Exergetic evaluation of biomass gasification. Energy 32(4), 568–574 (2007). https://doi.org/10.1016/j.energy.2006.06.024

    Article  Google Scholar 

  31. Quispe, C., Coronado, C., Carvalho, J.: Glycerol: production, consumption, prices, characterization and new trends in combustion. Renew. Sustain. Energy Rev. 27, 475–493 (2013)

    Article  Google Scholar 

  32. Sandeep, K., Dasappa, S.: First and second law thermodynamic analysis of air and oxy-steam biomass gasification. Int. J. Hydrog. Energy 39(34), 19474–19484 (2014). https://doi.org/10.1016/j.ijhydene.2014.09.134

    Article  Google Scholar 

  33. Shahirah, M., Gimbun, J., Ideris, A., Khan, M., Cheng, C.: Catalytic pyrolysis of glycerol into syngas over ceria-promoted Ni/α-Al2O3 catalyst. Renew. Energy 107, 223–234 (2017). https://doi.org/10.1016/j.renene.2017.02.002

    Article  Google Scholar 

  34. Sharma, A.: Equilibrium modeling of global reduction reactions for a downdraft (biomass) gasifier. Energy Convers. Manag. 49(4), 832–842 (2007). https://doi.org/10.1016/j.enconman.2007.06.025

    Article  Google Scholar 

  35. Shabbar, S., Janajreh, I.: Thermodynamic equilibrium analysis of coal gasification using gibbs energy minimization method. Energy Convers. Manag. 65, 755–763 (2013)

    Article  Google Scholar 

  36. Somnuk, K., Smithmaitrie, P., Prateepchaikul, G.: Optimization of continuous acid-catalyzed esterification for free fatty acids reduction in mixed crude palm oil using static mixer coupled with high-intensity ultrasonic irradiation. Energy Convers. Manag. 8, 193–199 (2013)

    Article  Google Scholar 

  37. Stein, Y.S., Antal Jr, M.J., Jones Jr, M.: A study of the gas-phase pyrolysis of glycerol. J. Anal. Appl. Pyrol. 4(4), 283–296 (1983)

    Article  Google Scholar 

  38. Talab, I., Nahari, Z., Qudaih, R., Janajreh, I.: Numerical modeling of coal tire-shred co-gasification. Jordan J. Mech. Ind. Eng. 4(1), 155–162 (2010)

    Article  Google Scholar 

  39. Tapah, B., Santos, R., Leeke, G.: Processing of glycerol under sub and supercritical water conditions. Renew. Energy 62, 353–361 (2014)

    Article  Google Scholar 

  40. Tyson, K.S.: Biodiesel R&D. Montana Biodiesel Workshop, October 8 2003 (2003)

  41. Vadthya, P. et al.: Electrodialysis aided desalination of crude glycerol in the production of biodiesel from oil feed stock. Desalination 362, 133–140 (2015)

    Article  Google Scholar 

  42. Vakalis, S., Patuzzi, F., Baratieri, M.: Thermodynamic modeling of small scale biomass gasifiers: development and assessment of the ‘‘Multi-Box’’ approach. Bioresour. Technol. 206, 173–179 (2016). https://doi.org/10.1016/j.biortech.2016.01.060

    Article  Google Scholar 

  43. Valliyappan, T., Bakhshi, N., Dalai, A.: Pyrolysis of glycerol for the production of hydrogen or syn gas. Biores. Technol. 99(10), 4476–4483 (2008)

    Article  Google Scholar 

  44. Yoon, S., Yun, Y., Seo, M., Kim, Y., Ra, H., Lee, J.: Hydrogen and syngas production from glycerol through microwave plasma gasification. Int. J. Hydrog. Energy 38(34), 14559–14567 (2013)

    Article  Google Scholar 

  45. Zainal, Z., Ali, R., Lean, C., Seetharamu, K.: Prediction of performance of a downdraft gasifier using equilibrium modeling for different biomass materials. Energy Convers. Manag. 42(12), 1499–1515 (2001). https://doi.org/10.1016/S0196-8904(00)00078-9

    Article  Google Scholar 

  46. Zhang, B., Tang, X., Li, Y., Xu, Y., Shen, W.: Hydrogen production from steam reforming of ethanol and glycerol over ceria- supported metal catalysts. Int. J. Hydrog. Energy 32(13), 2367–2373 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The financial support of Khalifa University of Science and Technology, Masdar Campus is highly acknowledged. We also thanks to Tadweer Abu Dhabi for their initial contract that brought this issue into light.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isam Janajreh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsamad, T., Almazrouei, M., Hussain, M.N. et al. Modeling of Thermochemical Conversion of Glycerol: Pyrolysis and H2O and CO2 Gasification. Waste Biomass Valor 9, 2361–2371 (2018). https://doi.org/10.1007/s12649-018-0306-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0306-x

Keywords

Navigation