Skip to main content

Advertisement

Log in

Influence of Drying on the Recoverable High-Value Products from Olive (cv. Arbequina) Waste Cake

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Olive oil production in Chile has increased 900% in the last 10 years, resulting in a concomitant increase in waste products that need to be managed. In this study, drying assays were conducted in a convective hot-air dryer on Arbequina olive waste cakes between 40 and 90 °C and a constant airflow of 2 m/s. Proximate composition, dietary fiber, minerals, fatty acids, tocopherols, phytochemicals as well as antioxidant activity as DPPH, FRAP and ORAC values were determined. These six drying temperatures were found to have variable effects on general composition of the residues. Fatty acids were found in high concentration at low temperatures where oleic acid was the most abundant and α-tocopherol was the most prevalent form of vitamin E. The phytochemical content (total phenolics, flavonoids and flavanols) represented an average of 20.7% of the waste cake. Fresh cake showed the highest polyphenols and flavonoids content whereas flavanols content was higher at all drying temperatures. 3-Hydroxytyrosol was the most abundant phenolic compound, and found in higher abundance in samples dried at 90 °C. The antioxidant capacity measured by FRAP and DPPH assays decreased with drying or remained unchanged when measured by ORAC assay. Given the nutritional and commercial potential of waste cakes, a drying technology for the preservation of bioactive compounds from waste products is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Roselló-Soto, E., Koubaa, M., Moubarik, A., Lopes, R.P., Saraiva, J.A., Boussetta, N., Grimi, N., Barba, D.F.J.: Emerging opportunities for the effective valorization of wastes and by-products generated during olive oil production process: non-conventional methods for the recovery of high-added value compounds. Trends Food Sci. Technol. 45, 296–310 (2015)

    Article  Google Scholar 

  2. Nunes, M.A., Pimentel, F.B., Costa, A.S.G., Alves, R.C., Beatriz, M., Oliveira, P.P.: Olive by-products for functional and food applications: challenging opportunities to face environmental constraints. Innov. Food Sci. Emerg. Technol. 35, 139–148 (2016)

    Article  Google Scholar 

  3. Ravindran, R., Jaiswal, A.K.: Exploitation of food industry waste for high-value products. Trends Biotechnol. 34(1), 58–69 (2016)

    Article  Google Scholar 

  4. Galanakis, C.M.: Olive fruit dietary fiber: components, recovery and applications. Trends Food Sci. Technol. 22(4), 175–184 (2011)

    Article  Google Scholar 

  5. Alhamad, M.N., Rababah, T.M., Al-u’datt, M., Ereifej, K., Esoh, R., Feng, H., Yang, W.: The physicochemical properties, total phenolic, antioxidant activities, and phenolic profile of fermented olive cake. Arab. J. Chem. 10, 136–140 (2017)

    Article  Google Scholar 

  6. Christoforou, E., Fokaides, P.A.: A review of olive mill solid wastes to energy utilization techniques. Waste Manag. 49, 346–363 (2016)

    Article  Google Scholar 

  7. Araújo, M., Pimentel, F.B., Alves, R.C., Oliveira, M.B.P.P.: Phenolic compounds from olive mill wastes: health effects, analytical approach and application as food antioxidants. Trends Food Sci. Technol. 45(2), 200–211 (2015)

    Article  Google Scholar 

  8. Hawashin, M.D., Al-Juhaimi, F., Ahmed, I.A.M., Ghafoor, K., Babiker, E.E.: Physicochemical, microbiological and sensory evaluation of beef patties incorporated with destoned olive cake powder. Meat Sci. 122, 32–39 (2016)

    Article  Google Scholar 

  9. Lafka, T.-I., Lazou, A.E., Sinanoglou, V.J., Lazos, E.S.: Phenolic and antioxidant potential of olive oil mill wastes. Food Chem. 125, 92–98 (2011)

    Article  Google Scholar 

  10. Suárez, M., Romero, M.-P., Motilva, M.-J.: Development of a phenol-enriched olive oil with phenolic compounds from olive cake. J. Agric. Food Chem. 58(19), 10396–10403 (2010)

    Article  Google Scholar 

  11. Khalifa, I., Barakat, H., El-Mansy, H.A., Soliman, S.A.: Enhancing the keeping quality of fresh strawberry using chitosan-incorporated olive processing wastes. Food Biosci. 13, 69–75 (2016)

    Article  Google Scholar 

  12. Saura-Calixto, F.: Dietary fiber as a carrier of dietary antioxidants: an essential physiological function. J. Agric. Food Chem. 59(1), 43–49 (2011)

    Article  Google Scholar 

  13. Uribe, E., Pasten, A., Lemus-Mondaca, R., Vega-Gálvez, A., Quispe-Fuentes, I., Ortiz, J., Di Scala, K.: Comparison of chemical composition, bioactive compounds and antioxidant activity of three olive-waste cakes. J. Food Biochem. 39, 189–198 (2015)

    Article  Google Scholar 

  14. Esteve, C., Marina, M.L., García, M.C.: Novel strategy for the revalorization of olive (Olea europaea) residues based on the extraction of bioactive peptides. Food Chem. 167, 272–280 (2015)

    Article  Google Scholar 

  15. Uribe, E., Lemus-Mondaca, R., Vega-Gálvez, A., Zamorano, M., Quispe-Fuentes, I., Pasten, A., Di Scala, K.: Influence of process temperature on drying kinetics, physicochemical properties and antioxidant capacity of the olive-waste cake. Food Chem. 147, 170–176 (2014)

    Article  Google Scholar 

  16. AOAC.: Official Method of Analysis (15th edn.). Arlington, MA: Association of Official Analytical Chemists (1990)

    Google Scholar 

  17. European Standard NF EN ISO 5509 Norm: Preparation of Methyl Esters of Fatty Acids. AFNOR, Paris (2000)

    Google Scholar 

  18. Uribe, E., Lemus-Mondaca, R., Pasten, A., Astudillo, S., Vega-Gálvez, A., Puente-Díaz, L., Di Scala, K.: Dehydrated olive-waste cake as a source of high value-added bioproduct: drying kinetics, physicochemical properties, and bioactive compounds. Chilean J. Agric. Res. 74, 293–301 (2014)

    Article  Google Scholar 

  19. Chuah, A.M., Lee, Y.-C., Yamaguchi, T., Takamura, H., Yin, L.-J., Matoba, T.: Effect of cooking on the antioxidant properties of coloured peppers. Food Chem. 111, 20–28 (2008)

    Article  Google Scholar 

  20. Kim, D.-O., Chun, O.K., Kim, Y.J., Moon, H.-Y., Lee, C.Y.: Quantification of polyphenolics and their antioxidant capacity in fresh plums. J. Agric. Food Chem. 51, 6509–6515 (2003)

    Article  Google Scholar 

  21. Nagel, C.W., Glories, Y.: Use of a modified dimethylaminocinnamaldehyde reagent for analysis of flavanols. Am. J. Enol. Vitic. 42, 364–366 (1991)

    Google Scholar 

  22. Stratil, P., Klejdus, B., Kubáň, V.: Determination of total content of phenolic compounds and their antioxidant activity in vegetables evaluation of spectrophotometric methods. J. Agric. Food Chem. 54, 607–616 (2006)

    Article  Google Scholar 

  23. Ou, B., Huang, D., Hampsch-Woodill, M., Flanagan, J.A., Deemer, E.K.: Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: a comparative study. J. Agric. Food Chem. 50, 3122–3128 (2002)

    Article  Google Scholar 

  24. Zhang, L., Li, J., Hogan, S., Chung, H., Welbaum, G.E., Zhou, K.: Inhibitory effect of raspberries on starch digestive enzyme and their antioxidant properties and phenolic composition. Food Chem. 119, 592–599 (2010)

    Article  Google Scholar 

  25. Uribe, E., Lemus-Mondaca, R., Vega-Gálvez, A., López, L.A., Pereira, K., López, J., Ah-Hen, K., Di Scala, K.: Quality characterization of waste olive cake during hot air drying: nutritional aspects and antioxidant activity. Food Bioprocess Technol. 6, 1207–1217 (2013)

    Article  Google Scholar 

  26. Gogŭs, F., Maskan, M.: Air-drying characteristics of solid waste (pomace) of olive oil processing. J Food Eng. 72, 378–382 (2006)

    Article  Google Scholar 

  27. Doymaz, I., Gorel, O., Akgun, N.A.: Drying characteristics of the solid byproduct of olive oil extraction. Biosyst Eng. 88, 213–219 (2004)

    Article  Google Scholar 

  28. Akgun, N., Doymaz, I.: Modelling of olive cake thin-layer drying process. J Food Eng. 68, 455–461 (2005)

    Article  Google Scholar 

  29. Gupta, M.K., Sehgal, V.K., Arora, S.: Optimization of drying process parameters for cauliflower drying. J Food Sci Technol. 50, 62–69 (2013)

    Article  Google Scholar 

  30. Miranda, M., Vega-Gálvez, A., López, J., Parada, G., Sanders, M., Aranda, M., Uribe, E., Di Scala, K.: Impact of air-drying temperature on nutritional properties, total phenolic content and antioxidant capacity of quinoa seeds (Chenopodium quinoa Willd.). Ind. Crops Prod. 32, 258–263 (2010)

    Article  Google Scholar 

  31. Grigelmo-Miguel, N., Martín-Belloso, O.: Influence of fruit dietary fibre addition on physical and sensorial properties of strawberry jams. J. Food Eng. 41, 13–21 (1999)

    Article  Google Scholar 

  32. Tseng, A., Zhao, Y.: Wine grape pomace as antioxidant dietary fibre for enhancing nutritional value and improving storability of yogurt and salad dressing. Food Chem. 138, 356–365 (2013)

    Article  Google Scholar 

  33. Dermeche, S., Nadour, M., Larroche, C., Moulti-Mati, F., Michaud, P.: Olive mill wastes: biochemical characterizations and valorization strategies. Process Biochem. 48, 1532–1552 (2013)

    Article  Google Scholar 

  34. Ajila, C.M., Rao, U.J.S.P.: Mango peel dietary fibre: composition and associated bound phenolics. J. Funct. Foods 5, 444–450 (2013)

    Article  Google Scholar 

  35. Eskicioglu, V., Kamiloglu, S., Nilufer-Erdil, D.: Antioxidant dietary fibres: potential functional food ingredients from plant processing by-products. Czech J. Food Sci. 33, 487–499 (2015)

    Article  Google Scholar 

  36. Alburquerque, J., Gonzálvez, J., García, D., Cegarra, J.: Agrochemical characterisation of “alperujo,” a solid by-product of the two-phase centrifugation method for olive oil extraction. Bioresour. Technol. 91, 195–200 (2004)

    Article  Google Scholar 

  37. Torrecilla, J.S., Aragón, J.M., Palancar, M.C.: Improvement of fluidized-bed dryers for drying solid waste (olive pomace) in olive oil mills. Eur. J. Lipid Sci. Technol. 108, 913–924 (2006)

    Article  Google Scholar 

  38. Elkacmi, R., Kamil, N., Bennajah, M.: Separation and purification of high purity products from three different olive mill wastewater samples. Biochem. Pharmacol. 5, 829–837 (2017)

    Google Scholar 

  39. Mirabella, N., Castellani, V., Sala, S.: Current options for the valorization of food manufacturing waste: a review. J. Clean. Prod. 65, 28–41 (2014)

    Article  Google Scholar 

  40. Molina-Alcaide, E., Yáñez-Ruiz, D.R.: Potential use of olive by-products in ruminant feeding: a review. Anim. Feed Sci. Technol. 147, 247–264 (2008)

    Article  Google Scholar 

  41. Kamal-Eldin, A., Appelqvist, L.: Aldehydic acids in frying oils: formation, toxicological significance and analysis. Grasas Aceites 47, 342–348 (1996)

    Article  Google Scholar 

  42. Escuderos, M.E., Sayago, A., Morales, M.T., Aparicio, R.: Evaluation of α-tocopherol in virgin olive oil by a luminescent method. Grasas Aceites 60, 336–342 (2009)

    Article  Google Scholar 

  43. Henríquez, M., Almonacid, S., Lutza, M., Simpson, R., Valdenegro, M.: Comparison of three drying processes to obtain an apple peel food ingredient. CyTA J. Food. 11(2), 127–135 (2013)

    Article  Google Scholar 

  44. Alu’datt, M.H., Alli, I., Ereifej, K., Alhamad, M., Al-Tawaha, A.R., Rababah, T.: Optimisation, characterisation and quantification of phenolic compounds in olive cake. Food Chem. 123, 117–122 (2010)

    Article  Google Scholar 

  45. Ahmad-Qasem, M.H., Barrajon-Catalan, E., Micol, V., Cárcel, J.A., Garcia-Perez, J.V.: Influence of air temperature on drying kinetics and antioxidant potential of olive pomace. J. Food Eng. 119, 516–524 (2013)

    Article  Google Scholar 

  46. Hidalgo, M., Sánchez-Moreno, C., de Pascual-Teresa, S.: Flavonoid–flavonoid interaction and its effect on their antioxidant activity. Food Chem. 121, 691–696 (2010)

    Article  Google Scholar 

  47. Ribeiro da Silva, L.M., de Figueiredo, E.A.T., Ricardo, N.M.P.S., Vieira, I.G.P., de Figueiredo, R.W., Brasil, I.M., Gomes, C.L.: Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil. Food Chem. 143, 398–404 (2014)

    Article  Google Scholar 

  48. Makris, D.P., Boskou, G., Andrikopoulos, N.K.: Polyphenolic content and in vitro antioxidant characteristics of wine industry and other agri-food solid waste extracts. J. Food Comp. Anal. 20, 125–132 (2007)

    Article  Google Scholar 

  49. Gu, L., Kelm, M.A., Hammerstone, J.F., Beecher, G., Holden, J., Haytowitz, D., Gebhardt, S., Prior, R.L.: Concentrations of proanthocyanidins in common foods and estimations of normal consumption. J. Nutr. 134, 613–617 (2004)

    Article  Google Scholar 

  50. Bouzid, O., Navarro, D., Roche, M., Asther, M., Haon, M., Delattre, M., Lorquin, J., Labat, M., Asther, M., Lesage-Meessen, L.: Fungal enzymes as a powerful tool to release simple phenolic compounds from olive oil by-product. Process Biochem. 40, 1855–1862 (2005)

    Article  Google Scholar 

  51. Lesage-Meessen, L., Navarro, D., Maunier, S., Sigoillot, J.-C., Lorquin, J., Delattre, M., Simon, J.-L., Asther, M., Labat, M.: Simple phenolic content in olive oil residues as a function of extraction systems. Food Chem. 75, 501–507 (2001)

    Article  Google Scholar 

  52. Fernández-Bolaños, J., Rodríguez, G., Rodríguez, R., Heredia, A., Guillén, R., Jiménez, A.: Production in large quantities of highly purified hydroxytyrosol from liquid–solid waste of two-phase olive oil processing or “alperujo.” J. Agric. Food Chem. 50, 6804–6811 (2002)

    Article  Google Scholar 

  53. Obied, H.K., Allen, M.S., Bedgood, D.R., Prenzler, P.D., Robards, K., Stockmann, R.: Bioactivity and analysis of biophenols recovered from olive mill waste. J. Agric. Food Chem. 53, 823–837 (2005)

    Article  Google Scholar 

  54. Granados-Principal, S., Quiles, J.L., Ramirez-Tortosa, C.L., Sanchez-Rovira, P., Ramirez-Tortosa, M.C.: Hydroxytyrosol: from laboratory investigations to future clinical trials. Nutr. Rev. 68, 191–206 (2010)

    Article  Google Scholar 

  55. Miralles, P., Chisvert, A., Salvador, A.: Determination of hydroxytyrosol and tyrosol by liquid chromatography for the quality control of cosmetic products based on olive extracts. J Pharm. Biomed. Anal. 102, 157–161 (2015)

    Article  Google Scholar 

  56. Kaleh, Z., Geißen, S.U.: Selective isolation of valuable biophenols from olive mill wastewater. Biochem. Pharmacol. 4, 373–384 (2016)

    Google Scholar 

  57. Agalias, A., Magiatis, P., Skaltsounis, A.-L., Mikros, E., Tsarbopoulos, A., Gikas, E., Spanos, I., Manios, T.: A new process for the management of olive oil mill waste water and recovery of natural antioxidants. J. Agric. Food Chem. 55, 2671–2676 (2007)

    Article  Google Scholar 

  58. Bianco, A., Buiarelli, F., Cartoni, G., Coccioli, F., Jasionowska, R., Margherita, P.: Analysis by liquid chromatography-tandem mass spectrometry of biophenolic compounds in olives and vegetation waters, Part I. J. Sep. Sci. 26, 409–416 (2003)

    Article  Google Scholar 

  59. Aliakbarian, B., Casazza, A.A., Perego, P.: Valorization of olive oil solid waste using high pressure-high temperature reactor. Food Chem. 128, 704–710 (2011)

    Article  Google Scholar 

  60. Wang, Z., Wang, C., Zhang, C., Li, W.: Ultrasound-assisted enzyme catalyzed hydrolysis of olive waste and recovery of antioxidant phenolic compounds. Innov. Food Sci. Emerg. Technol. https://doi.org/10.1016/j.ifset.2017.02.013

  61. Obied, H.K., Bedgood, D.R., Prenzler, P.D., Robards, K.: Effect of processing conditions, prestorage treatment, and storage conditions on the phenol content and antioxidant activity of olive mill waste. J. Agric. Food Chem. 56, 3925–3932 (2008)

    Article  Google Scholar 

  62. Amarowicz, R.: Antioxidant activity of Maillard reaction products. Eur. J. Lipid Sci. Technol. 111, 109–111 (2009)

    Article  Google Scholar 

  63. Prior, R.L.: Oxygen radical absorbance capacity (ORAC): new horizons in relating dietary antioxidants/bioactives and health benefits. J. Funct. Foods. 18, 797–810 (2015)

    Article  Google Scholar 

  64. Peña-Cerda, M., Arancibia-Radich, J., Valenzuela-Bustamante, P., Pérez-Arancibia, R., Barriga, A., Seguel, I., García, L., Delporte, C.: Phenolic composition and antioxidant capacity of Ugni molinae Turcz. leaves of different genotypes. Food Chem. 215, 219–227 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexis Pasten.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasten, A., Uribe, E., Stucken, K. et al. Influence of Drying on the Recoverable High-Value Products from Olive (cv. Arbequina) Waste Cake. Waste Biomass Valor 10, 1627–1638 (2019). https://doi.org/10.1007/s12649-017-0187-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-0187-4

Keywords

Navigation