Skip to main content

Advertisement

Log in

Energy Recovery From Conventional Biogas Digester Effluent with a Novel Bioreactor Configuration

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Anaerobic biotechnology offers both economic and ecological benefits for sustainable renewable energy production and sustainable agriculture practice. In this study, a novel bioreactor configuration, which is a combination of a continuous flow stirred-tank reactor (CSTR) and an up flow sludge blanket reactor (UASB), was used in order to valorize the residual organic content in the effluent of a conventional CSTR reactor. Thereby, maximum utilization of total COD potential was aimed by further processing of the residual COD from conventional farm based CSTR type digester effluent. The effluent of the CSTR reactor (dry matter 10%, HRT: 30 days) was fed into UASB reactors under varying HRT and Organic Loading Rate (OLR) conditions. Up to 98% COD removal was achieved in 4 L UASB reactor corresponding to maximum biogas production of 0.7 m3 biogas/kg CODremoved in UASB reactor. To the best of our knowledge, this integrated system is used for the first time to maximize the COD conversion into bio-methane during biogas production from laying hen litters. Thereby, a novel approach was presented a promising solution for the maximum valorization of animal manure as an alternative to conventional farm based biogas digester systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Turkish Statistical Institute (TUIK): tuik.gov.tr (2016). Accessed 16 Jan 2016

  2. Bengtson, L.P., Whitaker, J.H.: Farm structures in tropical climates. Food and Agriculture Organization of the United Nations, Rome (1988)

    Google Scholar 

  3. Akkaya, E., Demir, A., Varank, G.: Estimation of biogas generation from a uasb reactor via multiple regression model. Int. J. Green Energy. 12(2), 185–189 (2015)

    Article  Google Scholar 

  4. World Energy Council-Turkish National Committee (WEC-TNC): Energy Report 2014. ISSN: 1301–6318, 84–90 (2014)

  5. Yetilmezsoy, K.: Integration of kinetic modeling and desirability function approach for multi-objective optimization of uasb reactor treating poultry manure wastewater. Bioresour. Technol. 118, 89–101 (2012)

    Article  Google Scholar 

  6. Waskom, R.M.: Best management practices for manure utilization. 568 A, Colorado State University Cooperative Extension, Fort Collins (1999)

    Google Scholar 

  7. Chong, S., Sen, T.K., Kayaalp, A., Ang, H.M.: The performance enhancements of upflow anaerobic sludge blanket (uasb) reactors for domestic sludge treatment—a state of the art review. Water Resour. 46, 3434–3470 (2012)

    Google Scholar 

  8. Pandey, P.K., Ndegwa, P.M., Soupir, M.L., Alldredge, J.R., Pitts, M.J.: Efficacies of inocula on the startup of anaerobic reactors treating dairy manure under stirred and unstirred conditions. Biomass Bioenerg. 35, 2705–2720 (2011)

    Article  Google Scholar 

  9. Sakar, S., Yetilmezsoy, K., Kocak, E.: Anaerobic digestion technology ın poultry and livestock waste treatment- a literature review. Waste Manag. Res. 27(3), 18 (2009)

    Google Scholar 

  10. Yaldiz, O., Sozer, S., Caglayan, N., Ertekin, C., Kaya, D.: Methane production from plant wastes and chicken manure at different working conditions of a one-stage anaerobic digester. Energy Sources Part A: Recovery Util. Environ. Eff. 33(19), 1802–1813 (2011)

    Article  Google Scholar 

  11. Salminen, E., Rintala, J.: Anaerobic digestion of organic solid poultry slaughterhouse waste—a review. Bioresour. Technol. 83, 13–26 (2002)

    Article  Google Scholar 

  12. Rao, A.G., Reddy, T.S.K., Prakash, S.S., Vanajakshi, J., Joseph, J., Jetty, A., Reddy, A.R., Sarma, P.N.: Biomethanation of poultry litter leachate ın uasb reactor coupled with ammonia stripper for enhancement of overall performance. Bioresour. Technol. 99, 8679–8684 (2008)

    Article  Google Scholar 

  13. Calli, B., Mertoglu, B., Inanc, B., Yenigun, O.: Effects of high free ammonia concentrations on the performances of anaerobic bioreactors. Process Biochem. 40, 1285–1292 (2005)

    Article  Google Scholar 

  14. Abouelenien, F., Nakashimada, Y., Nishio, N.: Dry mesophilic fermentation of chicken manure for production of methane by repeated batch culture. J. Biosci. Bioeng. 107 (3), 293–295 (2009)

    Article  Google Scholar 

  15. Nasir, I.M., Ghazi, R., Omar, R.: Anaerobic digestion technology in livestock manure treatment for biogas production: a review. Eng. Life Sci. 12(3), 258–269 (2012)

    Article  Google Scholar 

  16. Abouelenien, F., Fujiwara, W., Namba, Y., Kosseva, M., Nishio, N., Nakashimada, Y.: Improved methane fermentation of chicken manure via ammonia removal by biogas recycle. Bioresour. Technol. 101, 6368–6373 (2010)

    Article  Google Scholar 

  17. Niu, Q., Qiao, W., Qiang, H., Hojo, T., Li, Y.Y.: Mesophilic methane fermentation of chicken manure at a wide range of ammonia concentration: stability, ınhibition and recovery. Bioresour. Technol. 137, 358–367 (2013)

    Article  Google Scholar 

  18. Yetilmezsoy, K., Sapci-Zengin, Z.: Recovery of ammonium nitrogen from the effluent of uasb treating poultry manure wastewater by map precipitation as a slow release fertilizer. J. Hazard. Mater. 166, 260–269 (2009)

    Article  Google Scholar 

  19. Yamamoto, T., Wakamatsu, S., Qiao, S., Hira, D., Fujii, T., Furukawa, K.: Partial nitritation and anammox of a livestock manure digester liquor and analysis of its microbial community. Bioresour. Technol. 102, 2342–2347 (2011)

    Article  Google Scholar 

  20. Müller, V.: Bacterial fermentation, In Encyclopedia of Life Sciences, pp 1–7, Nature Publishing, New York (2001)

    Google Scholar 

  21. Borowski, S., Weatherley, L.: Co-digestion of solid poultry manure with municipal sewage sludge. Bioresour. Technol. 142, 345–352 (2013)

    Article  Google Scholar 

  22. González, C.G., Barrios, X.G.: Anaerobic digestion of livestock wastes: vegetable residues as co-substrate and digestate posttreatment, Universidad De Valladolid, Valladolid (2010)

    Google Scholar 

  23. Callaghan, F.J., Wase, D.A.J., Thayanithy, K., Forster, C.F.: Continuous co-digestion of cattle slurry with fruit and vegetable wastes and chicken manure. Biomass Bioenerg. 27, 71–77 (2002)

    Article  Google Scholar 

  24. Gungor-Demirci, G., Demirer, G.N.: Effect of initial cod concentration, nutrient addition, temperature and microbial acclimation on anaerobic treatability of broiler and cattle manure. Bioresour. Technol. 93, 109–117 (2004)

    Article  Google Scholar 

  25. Bertin, L., Grilli, S., Spagni, A., Fava, F.: Innovative two-stage anaerobic process for effective codigestion of cheese whey and cattle manure. Bioresour. Technol. 128, 779–783 (2013)

    Article  Google Scholar 

  26. Liu, K., Tang, Y.Q., Matsui, T., Morimura, S., Wu, X.L., Kida, K.: Thermophilic anaerobic co-digestion of garbage, screened swine and dairy cattle manure. J. Biosci. Bioeng. 107(1), 54–60 (2009)

    Article  Google Scholar 

  27. Abouelenien, F., Elsaidy, N., Nakashimada, Y.: Simultaneous ammonia removal and methane production from chicken manure under dry thermophilic condition. J. Am. Sci. 9, 10 (2013)

    Google Scholar 

  28. APHA, AWWA, WPCF: Standard methods for the examination of water and wastewater. American Public Health Association, Washington, D.C (2001)

    Google Scholar 

  29. Speece, R.E.: Anaerobic biotechnology for ındustrial wastewaters, pp. 3-6-36. Archae Press, Nashville (1996)

    Google Scholar 

  30. Kata, M.T., Rebac, S., Lettinga, G.: The anaerobic treatment of low strength brewery wastewater in expanded granular sludge bed. Appl. Biochem. Biotechnol. 76, 15–32 (1999)

    Article  Google Scholar 

  31. Bujoczek, G., Oleszkiewicz, J., Sparling, R., Cenkowski, S.: High solid anaerobic digestion of chicken manure. J. Agric. Eng. Res. 76, 5160 (2000)

    Article  Google Scholar 

  32. Turkish Statistical Institute: Animal Production Statistics. http://www.turkstat.gov.tr/PreHaberBultenleri.do?id=21821 (2015). Accessed 1 Nov 2016

  33. OECD/FAO: Agricultural Outlook 2012–2021. (2012). Accessed 1 Nov 2016. doi: 10.1787/agr_outlook-2012-en

  34. Khanal, S.K.: Anaerobic biotechnology for bioenergy production: principles and applications, First Ed. Willey, USA. ISBN: 978-0-8138-2346-1 (2008)

    Book  Google Scholar 

  35. Demirci, Y., Saatçi, Y.: Bir anaerobik çamur çürütme sisteminde çeşitli yük parametrelerinin sistem verimine etkileri. Fen ve Mühendislik Bilimleri Dergisi. 15(3), 337–348 (2003)

    Google Scholar 

  36. Öztürk, E.: Peyniraltı suyunun anaerobik arıtma çamuru reaktöründe arıtımında en uygun koşulların belirlenmesi, Yüksek Lisans Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara. pp. 34,48–49,76–79 (2007)

    Google Scholar 

  37. Converse, J.C., Evans, G.W., Verhoeven, C.R., Gibbon, W.: Performance of a large size anaerobic digester for poultry manure. ASAE Publication. pp. 15 (1977)

  38. Kalyuzhnyi, S., Fedorovich, V., Nozhevnikova, A.: Anaerobic treatment of liquid fraction of hen manure in uasb reactors. Bioresour. Technol. 65, 221–225 (1998)

    Article  Google Scholar 

  39. Atuanya, E.I., Aigbirior, M.: Mesophilic Biomethanation and treatment of poultry wastewater using pilot scale uasb reactor. Environ. Monit. Assess. 77, 139–147 (2002)

    Article  Google Scholar 

  40. Anozie, A.N., Layokun, S.K., Okeke, C.U.: An evaluation of a batch pilot-scale digester for gas production from agricultural wastes. Energy Source. 27, 1301–1311 (2005)

    Article  Google Scholar 

  41. Mahmoud, M.: High strength sewage treatment in a uasb reactor and an integrated uasb-digester system. Bioresour. Technol. 99, 7531–7538 (2008)

    Article  Google Scholar 

  42. Abouelenien, F., Nakashimada, Y., Nishio, N.: Dry mesophilic fermentation of chicken manure for production of methane by repeated batch culture. J. Biosci. Bioeng. 107(3), 293–295 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Ege University, BAP (Bilimsel Araştırma Projesi) office under the grant No 13MUH002, for the financial support of this study. The data presented in this article was produced within the projects above, however it is only the authors of this article who are responsible for the results and discussions made herein. This article has been prepared within the context of Master Thesis studies of Gülizar Çalışkan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Azbar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çalışkan, G., Azbar, N. Energy Recovery From Conventional Biogas Digester Effluent with a Novel Bioreactor Configuration. Waste Biomass Valor 8, 2371–2381 (2017). https://doi.org/10.1007/s12649-016-9827-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9827-3

Keywords

Navigation