Skip to main content
Log in

The Effect of a Short Term Aerobic Pretreatment Step on the Anaerobic Co-digestion of the Organic Fraction of Municipal Solid Wastes: Liquid Extract Addition Versus Solid Phase Addition

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Goal of the work was to study the effect of mixing aerobically pretreated organic municipal solid wastes (OFMSW) with raw OFMSW in an anaerobic digestion process. The optimum time of aerobic pretreatment was found to be five days, as this was indicated via biological activity measurements (oxygen uptake rate, enzymatic activities, temperature). The aerobically pretreated wastes or a liquid extract from those pretreated wastes were, each separately, mixed with simulated OFMSW in various experiments. The mixtures were anaerobically digested for 28 days and five different treatments were performed including the blanks. The methane generation results were fitted to a typical anaerobic model to calculate theoretical maximum methane potential, maximum methane generation rate and theoretical lag time. Results indicated that the addition of 5-day aerobically pretreated OFMSW in solid form to raw OFMSW resulted in a 18 % net increase of the methane production. The Rmax was also increased by 39 % while no significant differences in the lag time of the methanogenic phase were observed. The addition of the liquid extract that was obtained from the 5-day pretreated OFMSW did not result in a statistically significant increase of the net methane production of the raw OFMSW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abudi, Z.N., Hu, Z., Sun, N., Xiao, B., Rajaa, N., Liu, C., Guo, D.: Batch anaerobic co-digestion of OFMSW (organic fraction of municipal solid waste), TWAS (thickened waste activated sludge) and RS (rice straw): Influence of TWAS and RS pretreatment and mixing ratio. Energy 107, 131–140 (2016)

    Article  Google Scholar 

  2. Agència de Residus de Catalunya.: Program for the Management of Municipal Solid Wastes in Catalonia, PROGREMIC, 2007–2012 (in Catalan) (2006)

  3. Alef, K., Nannipieri, P.: Methods in applied soil microbiology and biochemistry. Academic Press, San Diego (1995)

  4. Álvarez, J., Otero, L., Lema, J.: A methodology for optimising feed composition for anaerobic co-digestion of agro-industrial wastes. Bioresour. Technol. 101(4), 1153–1158 (2010)

    Article  Google Scholar 

  5. Ariunbaatar, J., Panico, A., Esposito, G., Pirozzi, F., Lens, P.N.: Pretreatment methods to enhance anaerobic digestion of organic solid waste. Appl. Energy 123, 143–156 (2014)

    Article  Google Scholar 

  6. Brummeler, E.T., Koster, I.W.: Enhancement of dry anaerobic batch digestion of the organic fraction of municipal solid waste by an aerobic pretreatment step. Biol. Wastes 31(3), 199–210 (1990)

    Article  Google Scholar 

  7. Cesaro, A., Belgiorno, V.: Pretreatment methods to improve anaerobic biodegradability of organic municipal solid waste fractions. Chem. Eng. J. 240, 24–37 (2014)

    Article  Google Scholar 

  8. Eklind, Y., Kirchmann, H.: Composting and storage of organic household waste with different litter amendments. II: nitrogen turnover and losses. Bioresour. Technol. 74(2), 125–133 (2000)

    Article  Google Scholar 

  9. Gerassimidou, S., Evangelou, A., Komilis, D.: Aerobic biological pretreatment of municipal solid waste with a high content of putrescibles: effect on landfill emissions. Waste Manag. Res. 31, 783–791 (2013)

    Article  Google Scholar 

  10. Gerhardt, P., Murray, R., Wood, W.A., Krieg, N.R.: Methods for general and molecular bacteriology. American Society for Microbiology Washington, DC (1994)

    Google Scholar 

  11. Güelfo, L.F., Álvarez-Gallego, C., Sales, D., Romero, L.: The use of thermochemical and biological pretreatments to enhance organic matter hydrolysis and solubilization from organic fraction of municipal solid waste (OFMSW). Chem. Eng. J. 168(1), 249–254 (2011)

    Article  Google Scholar 

  12. Hernández-Rodríguez, B., Córdova, J., Bárzana, E., Favela-Torres, E.: Effects of organic solvents on activity and stability of lipases produced by thermotolerant fungi in solid-state fermentation. J. Mol. Catal. B Enzym. 61(3–4), 136–142 (2009)

    Article  Google Scholar 

  13. Kim, H.J., Kim, S.H., Choi, Y.G., Kim, G.D., Chung, T.H.: Effect of enzymatic pretreatment on acid fermentation of food waste. J. Chem. Technol. Biotechnol. 81(6), 974–980 (2006)

    Article  Google Scholar 

  14. Kiran, E.U., Trzcinski, A.P., Liu, Y.: Enhancing the hydrolysis and methane production potential of mixed food waste by an effective enzymatic pretreatment. Bioresour. Technol. 183, 47–52 (2015)

    Article  Google Scholar 

  15. Kondusamy, D., Kalamdhad, A.S.: Pre-treatment and anaerobic digestion of food waste for high rate methane production—a review. J. Environ. Chem. Eng. 2(3), 1821–1830 (2014)

    Article  Google Scholar 

  16. Lim, J.W., Wang, J.-Y.: Enhanced hydrolysis and methane yield by applying microaeration pretreatment to the anaerobic co-digestion of brown water and food waste. Waste Manag. 33(4), 813–819 (2013)

    Article  Google Scholar 

  17. Martínez-Valdez, F., Martínez-Ramírez, C., Martínez-Montiel, L., Favela-Torres, E., Soto-Cruz, N., Ramírez-Vives, F., Saucedo-Castañeda, G.: Rapid mineralisation of the organic fraction of municipal solid waste. Bioresour. Technol. 180, 112–118 (2015)

    Article  Google Scholar 

  18. Mata-Alvarez, J., Dosta, J., Romero-Güiza, M., Fonoll, X., Peces, M., Astals, S.: A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renew. Sustain. Energy Rev. 36, 412–427 (2014)

    Article  Google Scholar 

  19. Mata-Alvarez, J., Mace, S., Llabres, P.: Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour. Technol. 74(1), 3–16 (2000)

    Article  Google Scholar 

  20. Miller, G.L., Blum, R., Glennon, W.E., Burton, A.L.: Measurement of carboxymethylcellulase activity. Anal. Biochem. 1(2), 127–132 (1960)

    Article  Google Scholar 

  21. Omemu, A., Akpan, I., Bankole, M., Teniola, O.: Hydrolysis of raw tuber starches by amylase of Aspergillus niger AM07 isolated from the soil. Afr. J. Biotechnol. 4, 19–25 (2005)

    Google Scholar 

  22. Pleissner, D., Kwan, T.H., Lin, C.S.K.: Fungal hydrolysis in submerged fermentation for food waste treatment and fermentation feedstock preparation. Bioresour. Technol. 158, 48–54 (2014)

    Article  Google Scholar 

  23. Ponsá, S., Gea, T., Sánchez, A.: Anaerobic co-digestion of the organic fraction of municipal solid waste with several pure organic co-substrates. Biosyst. Eng. 108, 352–360 (2011)

    Article  Google Scholar 

  24. Puyuelo, B., Gea, T., Sánchez, A.: A new control strategy for the composting process based on the oxygen uptake rate. Chem. Eng. J. 165, 161–169 (2010)

    Article  Google Scholar 

  25. Raposo, F., De la Rubia, M.A., Fernández-Cegrí, V., Borja, R.: Anaerobic digestion of solid organic substrates in batch mode: an overview relating to methane yields and experimental procedures. Renew. Sustain. Energy Rev. 16, 861–877 (2011)

    Article  Google Scholar 

  26. Saucedo-Castañeda, G., Trejo-Hernández, M.R., Lonsane, B.K., Navarro, J.M., Roussos, S., Dufour, D., Raimbault, M.: On-line automated monitoring and control systems for CO2 and O2 in aerobic and anaerobic solid-state fermentations. Process Biochem. 29(1), 13–24 (1994)

    Article  Google Scholar 

  27. Sawatdeenarunat, C., Surendra, K.C., Takara, D., Oechsner, H., Khanal, S.K.: Anaerobic digestion of lignocellulosic biomass: Challenges and opportunities. Bioresour. Technol. 178, 178–186 (2015)

    Article  Google Scholar 

  28. Tejada, M., García-Martínez, A.M., Parrado, J.: Relationships between biological and chemical parameters on the composting of a municipal solid waste. Bioresour. Technol. 100(17), 4062–4065 (2009)

    Article  Google Scholar 

  29. Tian, H., Duan, N., Lin, C., Li, X., Zhong, M.: Anaerobic co-digestion of kitchen waste and pig manure with different mixing ratios. J. Biosci. Bioeng. 120(1), 51–57 (2015)

    Article  Google Scholar 

  30. Vargas-García, M., Suárez-Estrella, F., López, M., Moreno, J.: Microbial population dynamics and enzyme activities in composting processes with different starting materials. Waste Manag. 30(5), 771–778 (2010)

    Article  Google Scholar 

  31. Vasmara, C., Cianchetta, S., Marchetti, R., Galletti, S.: Biogas production from wheat straw pretreated with ligninolytic fungi and co-digestion with pig slurry. Environ. Eng. Manag. J 14, 1751–1760 (2015)

    Google Scholar 

  32. Yong, Z., Dong, Y., Zhang, X., Tan, T.: Anaerobic co-digestion of food waste and straw for biogas production. Renew. Energy 78, 527–530 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

Authors thank the financial support provided by the Spanish Ministerio de Economía y Competitividad (Project CTM2015-69513-R). F.J. Martínez-Valdez is grateful to CONACyT, Mexico, for a PhD scholarships (No. 237051). Dimitrios Komilis thanks TECNIOspring programme for the 2014-2016 incoming fellowship in UAB (no. TECSPR13-1-0006). Raquel Barrena is grateful to TECNIOspring fellowship programme (TECSPR15-1-0051) co-financed by the European Union through the Marie Curie Actions and ACCIÓ (Generalitat de Catalunya).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel Barrena.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Valdez, F., Komilis, D., Saucedo-Castañeda, G. et al. The Effect of a Short Term Aerobic Pretreatment Step on the Anaerobic Co-digestion of the Organic Fraction of Municipal Solid Wastes: Liquid Extract Addition Versus Solid Phase Addition. Waste Biomass Valor 8, 1793–1801 (2017). https://doi.org/10.1007/s12649-016-9743-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9743-6

Keywords

Navigation