Skip to main content
Log in

Exploitation of Agricultural Wastes and By-Products for Production of Aureobasidium pullulans Y-2311-1 Xylanase: Screening, Bioprocess Optimization and Scale Up

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The potential of several agricultural wastes and by-products (wheat bran, oat bran, corn cob, brewer’s spent grain, malt sprout, artichoke stem, sugar beet pulp, olive seed, cotton stalk and hazelnut skin) was examined as the substrate for xylanase production by Aureobasidium pullulans Y-2311-1. Based on the screening studies, wheat bran was selected as the best substrate for further optimization studies. The effects of initial medium pH, temperature and incubation time on xylanase production in shake flask system were optimized by response surface methodology (RSM). The optimum levels of the process variables defined by the model (initial medium pH, 4.24; temperature, 30.27 °C; and incubation time 126.67 h) resulted in production of 85.19 U/ml xylanase. Taking the RSM optimized parameters in shake-flask scale into consideration; xylanase production was scaled up to bioreactor system with a working volume of 1.5 l. The peak of enzyme production was achieved after 126 h incubation that has previously been determined by RSM studies at shake flask level. Furthermore, the optimum levels of agitation and aeration in bioreactor system was found as 200 rpm and 1.5 vvm. Maximum enzyme production was close to 85 kU/l which could be translated into a productivity of 0.68 kU/l/h. No previous work considered the statistical optimization of xylanase production by A. pullulans on wheat bran and scale up of the bioprocess to a bioreactor system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Collins, T., Gerday, C., Feller, G.: Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29, 3–23 (2005)

    Article  Google Scholar 

  2. Kulkarni, N., Shendye, A., Rao, M.: Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev. 23, 411–456 (1999)

    Article  Google Scholar 

  3. Elgharbi, F., Hmida-Sayari, A., Zaafouri, Y., Bejar, S.: Expression of an Aspergillus niger xylanase in yeast: application in breadmaking and in vitro digestion. Int. J. Biol. Macromol. 79, 103–109 (2015)

    Article  Google Scholar 

  4. Beg, Q.K., Kapoor, M., Mahajan, L., Hoondal, G.S.: Microbial xylanases and their industrial applications: a review. Appl. Microbiol. Biotechnol. 56, 326–338 (2001)

    Article  Google Scholar 

  5. Wong, K.K.Y., Saddler, J.N.: Trichoderma xylanases, their properties and purification. Crit. Rev. Biotechnol. 12, 413–435 (1992)

    Article  Google Scholar 

  6. Wang, X., Luo, H., Yu, W., Ma, R., You, S., Liu, W., Hou, L., Zheng, F., Xie, X., Yao, B.: A thermostable Gloeophyllum trabeum xylanase with potential for the brewing industry. Food Chem. 99, 516–523 (2016)

    Article  Google Scholar 

  7. Dobrev, G.T., Pishtiyski, I.G., Stanchev, V.S., Mircheva, R.: Optimization of nutrient medium containing agricultural wastes for xylanase production by Aspergillus niger B03 using optimal composite experimental design. Bioresour. Technol. 98, 2671–2678 (2007)

    Article  Google Scholar 

  8. Joo, H.S., Chang, C.S.: Production of protease from a new alkalophilic Bacillus sp. I-312 grown on soybean meal: optimization and some properties. Process Biochem. 40, 1263–1270 (2005)

    Article  Google Scholar 

  9. Katapodis, P., Christakopoulou, V., Kekos, D., Christakopoulos, P.: Optimization of xylanase production by Chaetomium thermophilum in wheat straw using response surface methodology. Biochem. Eng. J. 35, 136–141 (2007)

    Article  Google Scholar 

  10. Bakir, U., Yavascaoglu, S., Guvenc, F., Ersayin, A.: An endo-β-1,4-xylanase from Rhizopus oryzae: production, partial purification and biochemical characterization. Enzyme Microb. Technol. 29, 328–334 (2001)

    Article  Google Scholar 

  11. Kar, S., Gauri, S.S., Das, A., Jana, A., Maity, C., Mandal, A., Mohapatra, P.K.D., Pati, B.R., Mondal, K.C.: Process optimization of xylanase production using cheap solid substrate by Trichoderma reesei SAF3 and study on the alteration of behavioral properties of enzyme obtained from SSF and SmF. Bioprocess Biosyst. Eng. 36, 57–68 (2013)

    Article  Google Scholar 

  12. Leathers, T.D.: Colour variants of Aureobasidium pullulans overproduce xylanase with extremely high specific activity. Appl. Environ. Microbiol. 52, 1026–1030 (1986)

    Google Scholar 

  13. Christov, L.P., Myburgh, J., Van Tonder, A., Prior, B.A.: Hydrolysis of extracted and fiber bound xylan with Aureobasidium pullulans enzymes. J. Biotechnol. 55, 21–29 (1997)

    Article  Google Scholar 

  14. Silbir, S., Dagbagli, S., Yegin, S., Baysal, T., Goksungur, Y.: Levan production by Zymomonas mobilis in batch and continuous fermentation systems. Carbohdr. Polym. 99, 454–461 (2014)

    Article  Google Scholar 

  15. Bailey, M.J., Bieley, P., Poutanen, K.: Interlabratory testing of methods for assay of xylanase activity. J. Biotechnol. 23, 257–270 (1992)

    Article  Google Scholar 

  16. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F.: Colorimetric method for determination of sugars and related substances. Anal. Chem. 29, 350–356 (1956)

    Article  Google Scholar 

  17. Laemmli, U.K.: Cleavage of structure proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970)

    Article  Google Scholar 

  18. Heukeshoven, J., Dernick, R.: Simplified method for silver staining of proteins in polyacrylamide gels and the mechanism of silver staining. Electrophoresis 6, 103–112 (1985)

    Article  Google Scholar 

  19. Haltrich, D., Nidetzky, B., Kulbe, K.D., Steiner, W., Silvia Zupancic, S.: Production of fungal xylanase. Bioresour. Technol. 58, 137–161 (1996)

    Article  Google Scholar 

  20. Polizeli, M.L.T.M., Rizzatti, A.C.S., Monti, R., Terenzi, H.F., Jorge, J.A., Amorim, D.S.: Xylanases from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol. 67, 577–591 (2005)

    Article  Google Scholar 

  21. Li, K., Azadi, P., Collins, R., Tolan, J., Kim, J.S., Eriksson, K.E.L.: Relationships between activities of xylanases and xylan structures. Enzyme Microb. Technol. 27, 89–94 (2000)

    Article  Google Scholar 

  22. Scheller, H.V., Ulvskov, P.: Hemicelluloses. Annu. Rev. Plant Biol. 61, 263–289 (2010)

    Article  Google Scholar 

  23. Merali, Z., Collins, S.R.A., Elliston, A., Wilson, D.R., Käsper, A., Waldro, K.W.: Characterization of cell wall components of wheat bran following hydrothermal pretreatment and fractionation. Biotechnol. Biofuels 8, 23 (2015). doi:10.1186/s13068-015-0207-1

    Article  Google Scholar 

  24. Kumar, A., Gupta, R., Shrivastava, B., Khasa, Y.P., Kuhad, R.C.: Xylanase production from an alkalophilic actinomycete isolate Streptomyces sp. RCK-2010, its characterization and application in saccharification of second generation biomass. J. Mol. Cat. B Enzym. 74, 170–177 (2012)

    Article  Google Scholar 

  25. Cui, Y.Q., Ouwehand, J.N.W., van der Lans, R.G.J.M., Giuseppin, M.L.F., Luyben, K.C.A.M.: Aspects of the use of complex media for submerged fermentation of Aspergillus awamori. Enzyme Microb. Technol. 23, 168–177 (1998)

    Article  Google Scholar 

  26. Demir, H., Tari, C.: Valorization of wheat bran for the production of polygalacturonase in SSF of Aspergillus sojae. Ind. Crops Prod. 54, 302–309 (2014)

    Article  Google Scholar 

  27. Yegin, S.: Determination of the bioprocess parameters effecting xylanase production by Aureobasidium pullulans. Gida (2017). doi:10.15237/gida.GD16053

    Google Scholar 

  28. Li, Y., Lin, J., Meng, D., Lu, J., Gu, G., Mao, Z.: Effect of pH, cultivation time and substrate concentration on the endoxylanase production by Aspergillus awamori ZH-26 under submerged fermentation using central composite rotary design. Food Technol. Biotechnol. 44, 473–477 (2006)

    Google Scholar 

  29. Li, Y., Cui, F., Liu, Z., Xu, Y., Zhao, H.: Improvement of xylanase production by Penicillium oxalicum ZH-30 using response surface methodology. Enzyme Microb. Technol. 40, 1381–1388 (2007)

    Article  Google Scholar 

  30. Fang, H.Y., Chang, S.M., Hsieh, M.C., Fang, T.J.: Production, optimization growth conditions and properties of the xylanase from Aspergillus carneus M34. J. Mol. Catal. B Enzym. 49, 36–42 (2007)

    Article  Google Scholar 

  31. Shanmugaprakash, M., Kirthika, J., Ragupathy, J., Nilanee, K., Manickam, A.: Statistical based media optimization and production of naringinase using Aspergillus brasiliensis 1344. Int. J. Biol. Macromol. 64, 443–452 (2014)

    Article  Google Scholar 

  32. Knob, A., Carmona, E.C.: Xylanase production by Penicillium sclerotiorum and its characterization. World Appl. Sci. J. 4, 277–283 (2008)

    Google Scholar 

  33. Smith, D.C., Wood, T.M.: Xylanase production by Aspergillus awamori. Development of a medium and optimization of the fermentation parameters for the production of extracellular xylanase and β-xylosidase while maintaining low protease production. Biotechnol. Bioeng. 38, 883–890 (1991)

    Article  Google Scholar 

  34. Adhyaru, D.N., Bhatt, N.S., Modi, H.A.: Enhanced production of cellulase-free, thermo-alkali-solvent-stable xylanase from Bacillus altitudinis DHN8, its characterization and application in sorghum straw saccharification. Biocatal. Agric. Biotechnol. 3, 182–190 (2014)

    Google Scholar 

  35. Nagar, S., Mittal, A., Kumar, D., Gupta, V.K.: Production of alkali tolerant cellulase free xylanase in high levels by Bacillus pumilus SV-205. Int. J. Biol. Macromol. 50, 414–420 (2012)

    Article  Google Scholar 

  36. Singh, R., Kumar, R., Bishnoi, K., Bishnoi, N.R.: Optimization of synergistic parameters for thermostable cellulase activity of Aspergillus heteromorphus using response surface methodology. Biochem. Eng. J. 48, 28–35 (2009)

    Article  Google Scholar 

  37. Bhattacharyya, M.S., Singh, A., Banerjee, U.C.: Production of carbonyl reductase by Geotrichum candidum in a laboratory scale bioreactor. Bioresour. Technol. 99, 8765–8770 (2008)

    Article  Google Scholar 

  38. Biswas, R., Sahai, V., Mishra, S., Bisaria, V.S.: Bioprocess strategies for enhanced production of xylanase by Melanocarpus albomyces IITD3A on agro-residual extract. J. Biosci. Bioeng. 110(6), 702–708 (2010)

    Article  Google Scholar 

  39. Fontana, R.C., Polidoro, T.A., Silveira, M.M.: Comparison of stirred tank and airlift bioreactors in the production of polygalacturonases by Aspergillus oryzae. Bioresour. Technol. 100, 4493–4498 (2009)

    Article  Google Scholar 

  40. Cheng, K.C., Demirci, A., Catchmark, J.M.: Evaluation of medium composition and fermentation parameters on pullulan production by Aureobasidium pullulans. Food Sci. Technol. Int. 17(2), 99–109 (2011)

    Article  Google Scholar 

  41. Michelin, M., Polizeli, M.L.T.M., Silva, D.P., Ruzene, D.S., Vicente, A.A., Jorge, J.A., Terenzi, H.F., Teixeira, J.A.: Production of xylanolytic enzymes by Aspergillus terricola in stirred tank and airlift tower loop bioreactors. J. Ind. Microbiol. Biotechnol. 38, 1979–1984 (2011)

    Article  Google Scholar 

  42. Chipeta, Z.A., Du Preez, J.C., Christopher, L.: Effect of cultivation pH and agitation rate on growth and xylanase production by Aspergillus oryzae in spent sulphite liquor. J. Ind. Microbiol. Biotechnol. 35, 587–594 (2008)

    Article  Google Scholar 

  43. Kumar, K.S., Manimaran, A., Permaul, K., Singh, S.: Production of β- xylanase by a Thermomyces lanuginosus MC134 mutant on corn cobs and its application in biobleaching of bagasse pulp. J. Biosci. Bioeng. 107, 494–498 (2009)

    Article  Google Scholar 

  44. Gomes, D.J., Gomes, J., Steiner, W.: Production of highly thermostable xylanase by a wild strain of thermophilic fungus Thermoascus aurantiacus and partial characterization of the enzyme. J. Biotechnol. 37, 11–22 (1994)

    Article  Google Scholar 

  45. Garai, D., Kumar, V.: Response surface optimization for xylanase with high volumetric productivity by indigenous alkali tolerant Aspergillus candidus under submerged cultivation. 3 Biotech. 3, 127–136 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by The Scientific and Technological Research Council of Turkey-TUBITAK (Project No: TOVAG 112O521) and Ege University Science and Technology Center-EBILTEM (Project No: 2013/BIL/025). S. Yegin is a management committee member in Cost Action TD1203 entitled as Food Waste Valorization for Sustainable Chemicals, Materials and Fuels (EUBis).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sirma Yegin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yegin, S., Buyukkileci, A.O., Sargin, S. et al. Exploitation of Agricultural Wastes and By-Products for Production of Aureobasidium pullulans Y-2311-1 Xylanase: Screening, Bioprocess Optimization and Scale Up. Waste Biomass Valor 8, 999–1010 (2017). https://doi.org/10.1007/s12649-016-9646-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9646-6

Keywords

Navigation