Skip to main content
Log in

Mixed Lignocellulosic Biomass Degradation and Utilization for Bacterial Cellulase Production

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Feedstock supply challenges provide impetus into the exploration of lignocellulosic mixtures in bioprocessing. Such mixtures have not been fully explored for bacterial cellulase production. Four bacterial species were evaluated for ability to utilize a mixture of oil palm and rice residues (MS) for cellulase production. Bacillus aerius, Bacillus anthracis, Cellvibrio japonicus and Klebsiella pneumoniae with ability to utilize MS for growth were investigated. A two-step sequential strategy was employed in selecting the candidate for cellulase production and degradation of MS. B. aerius displayed better cellulolytic ability than the others during plate screening on carboxymethyl cellulose-enriched medium. However, C. japonicus produced the highest activities of endoglucanase and total cellulase during targeted screening on MS. Analyses revealed that sequential pretreatment with NaOH and moist heat increased the accessibility and disrupted the surface morphology of MS for subsequent bacterial utilisation. C. japonicus achieved significant degradation of MS with 52.33 % substrate dry weight loss after 7 days as compared to B. aerius which degraded 21.33 % of MS in the same period. Substrate was hydrolyzed via the amorphous region. The low residual concentration of reducing sugars in the medium suggested that C. japonicus converted the liberated sugars into other products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Anwar, Z., Gulfraz, M., Irshad, M.: Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. J Radiat. Res. Appl. Sci. 7(2), 163–173 (2014). doi:10.1016/j.jrras.2014.02.003

    Article  Google Scholar 

  2. Himmel, M.E., Ding, S.-Y., Johnson, D.K., Adney, W.S., Nimlos, M.R., Brady, J.W., Foust, T.D.: Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813), 804–807 (2007). doi:10.1126/science.1137016

    Article  Google Scholar 

  3. Umikalsom, M.S., Ariff, A.B., Zulkifli, H.S., Tong, C.C., Hassan, M.A., Karim, M.I.A.: The treatment of oil palm empty fruit bunch fibre for subsequent use as substrate for cellulase production by Chaetomium globosum Kunze. Bioresour. Technol. 62(1–2), 1–9 (1997). doi:10.1016/S0960-8524(97)00132-6

    Article  Google Scholar 

  4. Klein-Marcuschamer, D., Oleskowicz-Popiel, P., Simmons, B.A., Blanch, H.W.: The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol. Bioeng. 109(4), 1083–1087 (2012). doi:10.1002/bit.24370

    Article  Google Scholar 

  5. Maki, M., Leung, K.T., Qin, W.: The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int. J. Biol. Sci. 5(5), 500–516 (2009)

    Article  Google Scholar 

  6. Maki, M.L., Broere, M., Leung, K.T., Qin, W.: Characterization of some efficient cellulase producing bacteria isolated from paper mill sludges and organic fertilizers. Int. J. Biochem Mol. Biol. 2(2), 146–154 (2011)

    Google Scholar 

  7. Nilsson, D., Hansson, P.-A.: Influence of various machinery combinations, fuel proportions and storage capacities on costs for co-handling of straw and reed canary grass to district heating plants. Biomass Bioenergy 20(4), 247–260 (2001). doi:10.1016/S0961-9534(00)00077-5

    Article  Google Scholar 

  8. Thomsen, M.H., Haugaard-Nielsen, H.: Sustainable bioethanol production combining biorefinery principles using combined raw materials from wheat undersown with clover-grass. J. Ind. Microbiol. Biotechnol. 35(5), 303–311 (2008). doi:10.1007/s10295-008-0334-9

    Article  Google Scholar 

  9. Ji, L., Yu, H., Liu, Z., Jiang, J., Sun, D.: Enhanced ethanol production with mixed lignocellulosic substrates from commercial furfural and cassava residues. BioResources 10(1), 1162–1173 (2015). doi:10.15376/biores.10.1.1162-1173

    Article  Google Scholar 

  10. Imamoglu, E., Sukan, F.V.: The effects of single and combined cellulosic agrowaste substrates on bioethanol production. Fuel 134, 477–484 (2014). doi:10.1016/j.fuel.2014.05.087

    Article  Google Scholar 

  11. Brodeur-Campbell, M., Klinger, J., Shonnard, D.: Feedstock mixture effects on sugar monomer recovery following dilute acid pretreatment and enzymatic hydrolysis. Bioresour. Technol. 116, 320–326 (2012). doi:10.1016/j.biortech.2012.03.090

    Article  Google Scholar 

  12. Kim, K.H., Tucker, M., Nguyen, Q.: Conversion of bark-rich biomass mixture into fermentable sugar by two-stage dilute acid-catalyzed hydrolysis. Bioresour. Technol. 96(11), 1249–1255 (2005). doi:10.1016/j.biortech.2004.10.017

    Article  Google Scholar 

  13. Lim, W.-S., Lee, J.-W.: Effects of pretreatment factors on fermentable sugar production and enzymatic hydrolysis of mixed hardwood. Bioresour. Technol. 130, 97–101 (2013). doi:10.1016/j.biortech.2012.11.122

    Article  Google Scholar 

  14. Lim, J.S., Manan, Z.A., Alwi, S.R.W., Hashim, H.: A review on utilisation of biomass from rice industry as a source of renewable energy. Renew. Sustain. Energy Rev. 16(5), 3084–3094 (2012)

    Article  Google Scholar 

  15. Abdullah, N., Sulaiman, F.: The oil palm wastes in Malaysia. In: Matovic, M.D. (ed.) Biomass Now—Sustainable Growth and Use, InTech. pp. 75–100 (2013)

  16. Abas, R., Kamarudin, M., Nordin, A., Simeh, M.: A study on the Malaysian oil palm biomass sector-supply and perception of palm oil millers. Oil Palm Ind. Econ. J. 11(1), 28–41 (2011)

    Google Scholar 

  17. Bahrin, E.K., Seng, P.Y., Abd-Aziz, S.: Effect of oil palm empty fruit bunch particle size on cellulase production by Botryosphaeria sp. under solid state fermentation. Aust. J. Basic Appl. Sci. 5(3), 276–280 (2011)

    Google Scholar 

  18. Brijwani, K., Vadlani, P.V.: Cellulolytic enzymes production via solid-state fermentation: effect of pretreatment methods on physicochemical characteristics of substrate. Enzyme Res. 2011, 10 (2011). doi:10.4061/2011/860134

    Article  Google Scholar 

  19. Bae, H.D., McAllister, T.A., Kokko, E.G., Leggett, F.L., Yanke, L.J., Jakober, K.D., Ha, J.K., Shin, H.T., Cheng, K.J.: Effect of silica on the colonization of rice straw by ruminal bacteria. Anim. Feed Sci. Technol. 65(1–4), 165–181 (1997). doi:10.1016/S0377-8401(96)01093-0

    Article  Google Scholar 

  20. Basu, S.N., Ghose, S.N.: The production of cellulase by fungi on mixed cellulosic substrates. Can. J. Microbiol. 6, 265–282 (1960)

    Article  Google Scholar 

  21. Dickerman, J., Starr, T.: A medium for the isolation of pure cultures of cellulolytic bacteria. J. Bacteriol. 62(1), 133–134 (1951)

    Google Scholar 

  22. Teather, R.M., Wood, P.J.: Use of congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Environ. Microbiol. 43(4), 777–780 (1982)

    Google Scholar 

  23. Hankin, L., Anagnostakis, S.L.: Solid media containing carboxymethylcellulose to detect Cx cellulase activity of micro-organisms. J. Gen. Microbiol. 98, 109–115 (1977)

    Article  Google Scholar 

  24. Zhang, Y.H.P., Hong, J., Ye, X.: Cellulase assays. In: Mielenz, J.R. (ed.) Biofuels Methods in Molecular Biology, pp. 213–231. Humana Press, New York (2009)

    Google Scholar 

  25. Wood, T.M., Bhat, K.M.: Methods for measuring cellulase activities. Methods Enzymol. 160, 87–112 (1988)

    Article  Google Scholar 

  26. Zahari, M.A.K.M., Zakaria, M.R., Ariffin, H., Mokhtar, M.N., Salihon, J., Shirai, Y., Hassan, M.A.: Renewable sugars from oil palm frond juice as an alternative novel fermentation feedstock for value-added products. Bioresour. Technol. 110, 566–571 (2012)

    Article  Google Scholar 

  27. Harun, N.A.F., Baharuddin, A.S., Zainudin, M.H.M., Bahrin, E.K., Naim, M.N., Zakaria, R.: Cellulase production from treated oil palm empty fruit bunch degradation by locally isolated Thermobifida fusca. BioResources 8(1), 676–687 (2013)

    Google Scholar 

  28. Herigstad, B., Hamilton, M., Heersink, J.: How to optimize the drop plate method for enumerating bacteria. J. Microbiol. Methods 44(2), 121–129 (2001). doi:10.1016/S0167-7012(00)00241-4

    Article  Google Scholar 

  29. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31(3), 426–428 (1959)

    Article  Google Scholar 

  30. Ghose, T.K.: Measurement of cellulase activities. Pure Appl. Chem. 59(2), 257–268 (1987). doi:10.1351/pac198759020257

    Article  Google Scholar 

  31. Gardner, J.G., Keating, D.H.: Requirement of the type II secretion system for utilization of cellulosic substrates by Cellvibrio japonicus. Appl. Environ. Microbiol. 76(15), 5079–5087 (2010)

    Article  Google Scholar 

  32. DeBoy, R.T., Mongodin, E.F., Fouts, D.E., Tailford, L.E., Khouri, H., Emerson, J.B., Mohamoud, Y., Watkins, K., Henrissat, B., Gilbert, H.J., Nelson, K.E.: Insights into plant cell wall degradation from the genome sequence of the soil bacterium Cellvibrio japonicus. J. Bacteriol. 190(15), 5455–5463 (2008). doi:10.1128/jb.01701-07

    Article  Google Scholar 

  33. Anand, A.A., Vennison, S.J., Sankar, S.G., Prabhu, D.I., Vasan, P.T., Raghuraman, T., Geoffrey, C.J., Vendan, S.E.: Isolation and characterization of bacteria from the gut of Bombyx mori that degrade cellulose, xylan, pectin and starch and their impact on digestion. J. Insect Sci. 10, 107 (2010). doi:10.1673/031.010.10701

    Article  Google Scholar 

  34. Ng, I.S., Chi, X., Wu, X., Bao, Z., Lu, Y., Chang, J.-S., Ling, X.: Cloning and expression of Cel8A from Klebsiella pneumoniae in Escherichia coli and comparison to cel gene of Cellulomonas uda. Biochem. Eng. J. 78, 53–58 (2013). doi:10.1016/j.bej.2013.01.009

    Article  Google Scholar 

  35. Li, W., Zhang, W.-W., Yang, M.-M., Chen, Y.-L.: Cloning of the thermostable cellulase gene from newly isolated Bacillus subtilis and its expression in Escherichia coli. Mol. Biotechnol. 40(2), 195–201 (2008). doi:10.1007/s12033-008-9079-y

    Article  Google Scholar 

  36. Kim, Y.-K., Lee, S.-C., Cho, Y.-Y., Oh, H.-J., Ko, Y.H.: Isolation of cellulolytic Bacillus subtilis strains from agricultural environments. ISRN Microbiol. 2012, 650563 (2012). doi:10.5402/2012/650563

    Article  Google Scholar 

  37. Narwal, S.K., Saun, N.K., Dogra, P., Chauhan, G., Gupta, R.: Production and characterization of biodiesel using nonedible castor oil by immobilized lipase from Bacillus aerius. BioMed Res. Int. 2015, 281934 (2015). doi:10.1155/2015/281934

    Article  Google Scholar 

  38. Saun, N.K., Mehta, P., Gupta, R.: Purification and physicochemical properties of lipase from thermophilic Bacillus aerius. J. Oleo Sci. 63(12), 1261–1268 (2014)

    Article  Google Scholar 

  39. Sridevi, B., Charya, M.S.: Isolation, identification and screening of potential cellulase-free xylanase producing fungi. Afr. J. Biotechnol. 10(22), 4624–4630 (2011)

    Google Scholar 

  40. Eveleigh, D.E., Mandels, M., Andreotti, R., Roche, C.: Measurement of saccharifying cellulase. Biotechnol. Biofuels 2, 21 (2009). doi:10.1186/1754-6834-2-21

    Article  Google Scholar 

  41. Dowe, N.: Assessing cellulase performance on pretreated lignocellulosic biomass using saccharification and fermentation-based protocols. In: Mielenz, J.R. (ed.) Biofuels: Methods and Protocols, vol. 581. Methods in Molecular Biology, pp. 233–245. Humana Press, New York (2009)

    Chapter  Google Scholar 

  42. Himmel, M.E., Decker, S.R., Johnson, D.K.: Challenges for assessing the performance of biomass degrading biocatalysts. In: Himmel, M.E. (ed.) Biomass Conversion: Methods and Protocols, Methods in Molecular Biology, vol. 908, pp. 1–8. Springer, New York (2012)

    Chapter  Google Scholar 

  43. Moutta, R.D., Silva, M.C., Corrales, R.C., Cerullo, M.A., Ferreira-Leitão, V.S., Bon, E.D.: Comparative response and structural characterization of sugarcane bagasse, straw and bagasse-straw 1: 1 mixtures subjected to hydrothermal pretreatment and enzymatic conversion. J. Microb. Biochem. Technol. S12, 2 (2013). doi:10.4172/1948-5948.S12-005

    Google Scholar 

  44. Haque, M.A., Barman, D.N., Kang, T.H., Kim, M.K., Kim, J., Kim, H., Yun, H.D.: Effect of dilute alkali pretreatment on structural features and enhanced enzymatic hydrolysis of Miscanthus sinensis at boiling temperature with low residence time. Biosyst. Eng. 114, 294–305 (2013)

    Article  Google Scholar 

  45. Zhang, J., Wang, Y., Zhang, L., Zhang, R., Liu, G., Cheng, G.: Understanding changes in cellulose crystalline structure of lignocellulosic biomass during ionic liquid pretreatment by XRD. Bioresour. Technol. 151, 402–405 (2014). doi:10.1016/j.biortech.2013.10.009

    Article  Google Scholar 

  46. Segal, L., Creely, J.J., Martin, A.E., Conrad, C.M.: An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer. Text. Res. J. 29(10), 786–794 (1959). doi:10.1177/004051755902901003

    Article  Google Scholar 

  47. Xu, F., Yu, J., Tesso, T., Dowell, F., Ang, D.W.: Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: a mini-review. Appl. Energy 104, 801–809 (2013)

    Article  Google Scholar 

  48. Wang, C.: Photonanocatalyst aided alkaline pretreatment and raman spectroscopic characterization of corn stover biomass Iowa State University (2012)

  49. Gupta, P., Samant, K., Sahu, A.: Isolation of cellulose-degrading bacteria and determination of their cellulolytic potential. Int. J. Microbiol. 2012, 578925 (2012). doi:10.1155/2012/578925

    Article  Google Scholar 

  50. Maki, M., Iskhakova, S., Zhang, T., Qin, W.: Bacterial consortia constructed for the decomposition of Agave biomass. Bioengineered 5(3), 1 (2014)

    Article  Google Scholar 

  51. Jagmann, N., Philipp, B.: Reprint of design of synthetic microbial communities for biotechnological production processes. J Biotechnol 192, Part B, 293–301 (2014). doi:10.1016/j.jbiotec.2014.11.005

    Article  Google Scholar 

  52. Adaganti, S.Y., Kulkarni, B.M., Desai, G.P., Shanmukhapp, S.: Isolation and characterization of lignin obtained from Calliandra calothyrsus shrub using FT-IR spectroscopy. Int. J. Current Eng. Technol. 4(2), 542–544 (2014)

    Google Scholar 

Download references

Acknowledgments

This research was funded by University of Malaya under research grants RP024-2012D, RG048-11BIO and PG114-2013B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khanom Simarani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oke, M.A., Annuar, M.S.M. & Simarani, K. Mixed Lignocellulosic Biomass Degradation and Utilization for Bacterial Cellulase Production. Waste Biomass Valor 8, 893–903 (2017). https://doi.org/10.1007/s12649-016-9595-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9595-0

Keywords

Navigation