Skip to main content
Log in

Strategies for Using Pulp and Paper Sludges as Culture Media for Xylanase Production with Bacillus pumilus

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Fermentation of Bacillus pumilus (B. pumilus) using different pulp and paper sludges as culture media were performed in this work to produce at lower cost industrial enzymes such as xylanases. Secondary sludge was shown to be a suitable alternative culture medium for B. pumilus growth, while primary sludge may serve as xylanases inducer. Mixing primary (PS) and secondary sludges (SS) at 1PS:2SS (w/w) ratio having 15 g/L total solids concentration resulted in the highest cell concentration of 2 × 108 CFU/mL and the highest xylanase activity of 3.8 IU/mL under shake flask fermentation. Other lignocellulosic biomasses were tested as potential xylanase inducers. Addition of corn stover to SS showed the highest xylanase activity (10.7 IU/mL). When using a 7 L bioreactor, total cell concentration and xylanase activity obtained in the secondary sludge medium supplemented with commercial xylan (2.5 × 109 CFU/mL and 35.5 IU/mL, respectively) and corn stover (3.4 × 109 CFU/mL and 37.8 IU/mL, respectively) were comparative to a semi-synthetic based medium (5.8 × 109 CFU/mL and 47 IU/mL, respectively). The xylanase activity of B. pumilus produced in paper sludge is stable at pH 6–9 at 50 °C that offered a potential application of the enzyme for biobleaching in pulp and paper industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Farrell, R.L., Hata, K., Wall, M.B.: Solving pitch problems in pulp and paper processes by the use of enzymes or fungi. In: Eriksson, K.-E. L., et al. (eds.) Biotechnology in the Pulp and Paper Industry, pp. 197–212. Berlin: Springer (1997)

  2. Gutiérrez, A., José, C., Martínez, A.T.: Microbial and enzymatic control of pitch in the pulp and paper industry. Appl. Microbiol. Biotechnol. 82, 1005–1018 (2009)

    Article  Google Scholar 

  3. Nghiem, N.P., Montanti, J., Johnston, D.B., Drapcho, C.: Fractionation of corn fiber treated by soaking in aqueous ammonia (SAA) for isolation of hemicellulose B and production of C5 sugars by enzyme hydrolysis. Appl. Biochem. Biotechnol. 164, 1390–1404 (2011)

    Article  Google Scholar 

  4. Petersen, M.Ø., Larsen, J., Thomsen, M.H.: Optimization of hydrothermal pretreatment of wheat straw for production of bioethanol at low water consumption without addition of chemicals. Biomass Bioenergy 33, 834–840 (2009)

    Article  Google Scholar 

  5. Beg, Q.K., Kapoor, M., Mahajan, L., Hoondal, G.S.: Microbial xylanases and their industrial applications: a review. Appl. Microbiol. Biotechnol. 56, 326–338 (2001)

    Article  Google Scholar 

  6. Collins, T., Gerday, C., Feller, G.: Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29, 3–23 (2005)

    Article  Google Scholar 

  7. Paës, G., Berrin, J., Beaugrand, J.: GH11 xylanases: structure/function/properties relationships and applications. Biotechnol. Adv. 30, 564–592 (2012)

    Article  Google Scholar 

  8. Polizeli, M.L.T.M., Rizzatti, A.C.S., Monti, R., Terenzi, H.F., Jorge, J.A., Amorim, D.S.: Xylanases from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol. 67, 577–591 (2005)

    Article  Google Scholar 

  9. Shallom, D., Shoham, Y.: Microbial hemicellulases. Curr. Opin. Microbiol. 6, 219–228 (2003)

    Article  Google Scholar 

  10. Battan, B., Sharma, J., Dhiman, S.S., Kuhad, R.C.: Enhanced production of cellulase-free thermostable xylanase by Bacillus pumilus ASH and its potential application in paper industry. Enzyme Microbiol. Technol. 41, 733–739 (2007)

    Article  Google Scholar 

  11. Duarte, M.C.T., da Cristina, S.E., de Bulhões Gomes, I.M., Ponezi, AlN, Portugal, E.P., Vicente, J.R., Davanzo, E.: Xylan-hydrolyzing enzyme system from Bacillus pumilus CBMAI 0008 and its effects on Eucalyptus grandis kraft pulp for pulp bleaching improvement. Bioresour. Technol. 88, 9–15 (2003)

    Article  Google Scholar 

  12. Pham, P.L., Taillandier, P., Delmas, M., Strehaiano, P.: Production of xylanases by Bacillus polymyxa using lignocellulosic wastes. Ind. Crops Prod. 7, 195–203 (1998)

    Article  Google Scholar 

  13. Subramaniyan, S., Prema, P.: Minireview. Cellulase-free xylanases from Bacillus and other microorganisms. FEMS Microbiol. Lett. 183, 1–7 (2000)

    Article  Google Scholar 

  14. Kapilan, R., Arasaratnam, V.: Paddy husk as support for solid state fermentation to produce xylanase from Bacillus pumilus. Rice Sci. 18, 36–45 (2011)

    Article  Google Scholar 

  15. Kapoor, M., Nair, L.M., Kuhad, R.C.: Cost-effective xylanase production from free and immobilized Bacillus pumilus strain MK001 and its application in saccharification of Prosopis juliflora. Biochem. Eng. J. 38, 88–97 (2008)

    Article  Google Scholar 

  16. Poorna, C.A., Prema, P.: Production and partial characterization of endoxylanase by Bacillus pumilus using agro industrial residues. Biochem. Eng. J. 32, 106–112 (2006)

    Article  Google Scholar 

  17. Vu, K.D., Tyagi, R.D., Valéro, J.R., Surampalli, R.Y.: Batch and fed-batch fermentation of Bacillus thuringiensis using starch industry wastewater as fermentation substrate. Bioprocess Biosyst. Eng. 33, 691–700 (2010)

    Article  Google Scholar 

  18. Yezza, A., Tyagi, R.D., Valéro, J.R., Surampalli, R.Y., Smith, J.: Scale-up of biopesticide production processes using wastewater sludge as a raw material. J. Ind. Microbiol. Biotechnol. 31, 545–552 (2004)

    Article  Google Scholar 

  19. Nagar, S., Gupta, V.K., Kumar, D., Kumar, L., Kuhad, R.C.: Production and optimization of cellulase-free, alkali-stable xylanase by Bacillus pumilus SV-85S in submerged fermentation. J. Ind. Microbiol. Biotechnol. 37, 71–83 (2009)

    Article  Google Scholar 

  20. Gavrilescu, D.: Energy from biomass in pulp and paper mills. Environ. Eng. Manag. J. 7, 537–546 (2008)

    Google Scholar 

  21. Lynd, L.R., Lyford, K., South, C.R., van Walsum, G., Levenson, K.: Evaluation of paper sludges for amenability to enzymatic hydrolysis and conversion to ethanol. TAPPI J. 84, 50 (2001)

    Google Scholar 

  22. Reddy, C.A., Breznak, J.A., Marzluf, G.A., Schmidt, T.M., Snyder, L.R.: Methods for General and Molecular Microbiology. ASM Press, Washington, DC (2007)

    Google Scholar 

  23. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D.: Determination of Structural Carbohydrates and Lignin in Biomass. [National Renewable Energy Laboratory Technical Report NREL/TP-510-42618] (2008)

  24. APHA, AWWA, WPCF: Standard methods for examination of water and wastewaters. In: 20th Edition American Public Health Association, Washington, US. Section 2540B, pp. 216–218 (1999)

  25. Ghose, T.K., Bisaria, V.S., IUPAC (International Union of Pure and Applied Chemistry): Measurement of hemicellulase activities. Part 1: xylanases. Pure Appl. Chem. 59, 1739–1752 (1987)

    Google Scholar 

  26. Schneider, G., Strehaiano, P., Taillandier, P.: Improvement of a fed-batch process for high level xylanase production by a Bacillus strain. J. Chem. Technol. Biotechnol. 76, 456–460 (2001)

    Article  Google Scholar 

  27. Marques, S., Alves, L., Roseiro, J.C.: Gírio conversion of recycle paper sludge to ethanol by SHF and SSF using Pichia stipitis. Biomass Bioenergy 32, 400–406 (2008)

    Article  Google Scholar 

  28. Verma, M., Brar, S.K., Tyagia, R.D., Valéroa, J.R., Surampalli, R.Y.: Wastewater sludge as a potential raw material for antagonistic fungus (Trichoderma sp.): role of pre-treatment and solids concentration. Water Res. 39, 3587–3596 (2005)

    Article  Google Scholar 

  29. Michelin, M., de Oliveira Mota, A.M., de Lourdes Polizeli, M., de Teixeira, M., da Pereira, S.D., Vicente, A.A., Teixeira, J.A.: Influence of volumetric oxygen transfer coefficient (k L a) on xylanases batch production by Aspergillus niger van Tieghem in stirred tank and internal-loop airlift bioreactors. Biochem. Eng. J. 80, 19–26 (2013)

    Article  Google Scholar 

  30. Degrassi, G., Vindigni, A., Venturi, V.: A thermostable α-arabinofuranosidase from xylanolytic Bacillus pumilus: purification and characterisation. J. Biotechnol. 101, 69–79 (2003)

    Article  Google Scholar 

  31. Wang, C.-Y., Chan, H., Lin, H.-T., Shyu, Y.-T.: Production, purification and characterisation of a novel halostable xylanase from Bacillus sp. NTU-06. Ann. Appl. Biol. 156, 187–197 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are sincerely thankful to the Natural Sciences and Engineering Research Council of Canada (Grant No. 371821) for financial support. The views and opinions expressed in this article are those of authors. We would like to extend our thanks to Mr. Brice Ouedraogo for experimental assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Barnabé.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, T.T., Pham, T.T.H., Adjallé, K. et al. Strategies for Using Pulp and Paper Sludges as Culture Media for Xylanase Production with Bacillus pumilus . Waste Biomass Valor 6, 1103–1113 (2015). https://doi.org/10.1007/s12649-015-9404-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-015-9404-1

Keywords

Navigation