Skip to main content
Log in

Investigation of excellent transparent conducting electrode for efficient organometallic halide perovskite solar cell

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

As windows for the transmission of photons and electrons, applications of front contact transparent conducting electrodes (TCE) have played significant roles in efficient organometallic halide perovskite solar cells (PSCs). The widely exploited indium-doped SnO2 (ITO) electrodes have indeed been searched for replacements because of their increasing cost and inherent fragility. So far, ultrathin metal film adhesion to surfaces has indeed been characterized by a rough, discontinuous morphology and poor opto-physical properties. The suggested possible steadier and better work functions of TCEs are the most economically advantageous methods for boosting the effectiveness of the optimized PSC through the drift–diffusion approach. Reduced graphene oxide (rGO) stands out as one of the appropriate special TCE applications among the many perspectives with high conductivity and transparency, because of its abundance in nature, exceptional optoelectronic properties, and potential for large-scale production. For excellent performance in the optimal PSC, the design has an extensive range of fascinated on rGO as TCEs and with the extreme thickness of methyl ammonium lead iodide-bromide (MAPbI2Br1), offered a maximum PCE of 25.01% under the AM1.5 spectrum. It also explored the contribution of ultrathin TCE film thickness to short-circuit density (JSC), which is a possibility to accurately control the uniformity surface. In addition, the lower optimal trap densities of perovskite and the function of normalized temperature might both help the superior products to achieve a cost-effective PSC device structure for reasonable fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M A Green Photon. 8 506 (2014)

    Article  Google Scholar 

  2. S Bhattarai et al Micro and Nanostructures 172 207450 (2022)

    Article  Google Scholar 

  3. B Dou et al ACS Energy Letters 3 2558 (2018)

    Article  Google Scholar 

  4. S Bhattarai, R Pandey and J Madan Energy 244 255 (2022)

    Google Scholar 

  5. K Hwang et al Adv. Mater. 2 1241 (2015)

    Article  Google Scholar 

  6. A Kojima et al J. Amer. Chem. Soc. 131 6050 (2009)

    Article  Google Scholar 

  7. D Gogoi and T D Das Optic. Mater. 143 114238 (2023)

    Article  Google Scholar 

  8. N Zhang et al Organ. Elector. 113 106709 (2023)

    Article  ADS  Google Scholar 

  9. D Gogoi, S Bhattarai and T D Das Pramana 97 188 (2023)

    Article  ADS  Google Scholar 

  10. H S Jung, G S Han, N G Park and M J Ko Joule 3 1850 (2019)

    Article  Google Scholar 

  11. S Bhattarai, D Gogoi, A Sharma and T D Das Indian J Phys. 97 3459 (2023)

    Article  ADS  Google Scholar 

  12. A S Bati et al Comm. Mater. 4 2 (2023)

    Article  ADS  Google Scholar 

  13. J J Shen Synthetic Metals 271 116582 (2021)

    Article  Google Scholar 

  14. D Gogoi, S Bhattarai, T D Das Indian J Phys. (2023). https://doi.org/10.1007/s12648-023-03042-x

  15. N Sahu, B Parija and S Panigrahi Indian J Phys. 83 493 (2009)

    Article  ADS  Google Scholar 

  16. E Della Gaspera et al Nano Energy 13 249 (2015)

    Article  Google Scholar 

  17. M R Azani Energy Mater. 10 2002536 (2020)

    Article  Google Scholar 

  18. Y Wang et al Sol. Energy 186 126 (2019)

    Article  ADS  Google Scholar 

  19. D Gogoi and T D Das Physica Scripta 98 085908 (2023)

    Article  ADS  Google Scholar 

  20. N Balis and E Stratakis Today 19 580 (2016)

    Google Scholar 

  21. B Wilkinson, N L Chang, M A Green and A W Ho-Baillie Progress in Photovoltaics: Research and Applications 26 659 (2018)

    Article  Google Scholar 

  22. Y G Bi et al Adv. Optic. Mater. 7 1800778 (2019)

    Article  Google Scholar 

  23. D Gogoi, S Sagar Bhattarai and T D Das Mater. Today: Proc. 67 280 (2022)

  24. Y Xu et al Nano-Micro Letters 14 117 (2022)

    Article  ADS  Google Scholar 

  25. H Xie et al Physica Status Solidi RRL 13 1800566 (2019)

    Article  ADS  Google Scholar 

  26. G Saianand et al J. Energy Chem. 54 151 (2021)

    Article  Google Scholar 

  27. D Kumar, K Singh, V Verma and H S Bhatti Indian J Phys. 90 139 (2016)

    Article  ADS  Google Scholar 

  28. V Sittinger et al Surf. Coat. Technol. 457 129286 (2023)

    Article  Google Scholar 

  29. R Kumar et al Appl. Surf. Sci. 425 558 (2017)

    Article  ADS  Google Scholar 

  30. B Ankamwar, P Das and U K Sur Indian J Phys 90 391 (2016)

    Article  ADS  Google Scholar 

  31. K Gong et al Materi. & Design 211 110170 (2021)

    Article  Google Scholar 

  32. J Yun Adv. Function. Mater. 27 1606641 (2017)

    Article  Google Scholar 

  33. C Preston et al Nano Research 6 461 (2013)

    Article  Google Scholar 

  34. S Bhattarai et al IEEE Trans. Electron Devices 69 3217–3224 (2022)

    Article  ADS  Google Scholar 

  35. P Spinelli and R F Pineda Phys. Lett. 118 241110 (2021)

    Google Scholar 

  36. S Maity et al. Indian J Phys. 1 (2022)

  37. S Bhattarai, A Sharma, D Muchahary, D Gogoi and T D Das Optical Mater. 118 111285 (2022)

    Article  Google Scholar 

  38. R Pandey et al. ACS Appl. Electronic Mater. (2023)

  39. D Gogoi, S Bhattarai, H Kalita and T D Das Mater. Today: Proc. 73 553 (2023)

    Google Scholar 

  40. R Lu et al Chem. Engineer. J 433 133845 (2022)

    Article  Google Scholar 

  41. S Sobrado et al Sol. Energy 196 92 (2020)

    Article  ADS  Google Scholar 

  42. Y Feng et al Optic. Mater. 127 112264 (2022)

    Article  Google Scholar 

  43. K O Brinkmann et al Solar RRL 5 2100371 (2021)

    Article  Google Scholar 

  44. R Wang et al Adv. Functional Mater. 29 1808843 (2019)

    Article  Google Scholar 

  45. R N Chauhan, C Singh, R S Anand and J Kumar Inter. J Photoenergy 2012 (2012)

  46. H B Lee, W Y Jin and M M Ovhal Chem. C 7 1087 (2019)

    Google Scholar 

  47. K Zeng et al Thin Solid Films 443 60 (2003)

    Article  ADS  Google Scholar 

  48. P Meenakshi and R Karthick Energy Mater. Sol. Cells 128 264 (2014)

    Article  Google Scholar 

  49. K Sun, P Li and Y Xia Mater. Interfaces 7 15314 (2015)

    Article  ADS  Google Scholar 

  50. A B Roy et al Nanotechnology 27 305302 (2016)

    Article  Google Scholar 

  51. A Y Alsalloum et al ACS Energy Letters 5 657 (2020)

    Article  Google Scholar 

  52. M K Mohammed et al Optic. Mater. 133 112901 (2022)

    Article  Google Scholar 

  53. M B Islam, M Yanagida and Y Shirai Energy Mater. Sol. Cells 195 323 (2019)

    Article  Google Scholar 

  54. M Ge et al Sol. Energy 220 18 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Dr. Marc Burgelman with his collaborators from the University of Gent in Belgium for having provided the accessible SCAPS-1D. Author Dipankar Gogoi expresses his heartfelt gratitude to the NIT Arunachal Pradesh, Jote, India, for supporting his research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. D. Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gogoi, D., Hossain, M.K. & Das, T.D. Investigation of excellent transparent conducting electrode for efficient organometallic halide perovskite solar cell. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03205-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03205-4

Keywords

Navigation