Skip to main content
Log in

Thermodynamics evaluation in Einstein–Gauss–Bonnet gravity like black holes

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

From D-dimensional black holes, we investigate the Hawking radiation of charged boson particles from charged black holes without and with quantum gravity. We apply the field equation and WKB approximation to solve the Einstein–Gauss–Bonnet gravity like spacetime and obtain the tunneling radiation from charged black holes using complex path integration. We also calculate the temperature of the radiation from these black holes using the tunneling probability of outgoing particles without and with the influence of quantum gravity. We also look into the entropy and heat capacity of well-known thermodynamic properties for the geometry under consideration. It is concluded that the D dimension like black holes is stable or unstable under Einstein–Gauss–Bonnet gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G E Romero and G S Vila, (Berlin Heidelberg, Springer-Verlag) (2014)

  2. A Einstein Annalen Phys. 49 769 (1916)

    Article  ADS  CAS  Google Scholar 

  3. S W Hawking, M J Perry and A Strominger Phys Rev. Lett. 116 231301 (2016)

    Article  ADS  PubMed  Google Scholar 

  4. M Angheben, M Nadalini, L Vanzo and S Zerbini JHEP 05 014 (2005)

    Article  ADS  Google Scholar 

  5. P Kraus and F Wilczek Nucl. Phys. B 437 231 (1995)

    Article  ADS  Google Scholar 

  6. A D Vries and T S Kaler Phys. Rev. D 65 104022 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  7. Q Q Jiang Phys. Rev. D 78 044009 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  8. T Jian and C Bing-Bing Acta Physica Polonica 40 241 (2009)

    MathSciNet  CAS  Google Scholar 

  9. A Yale Phys. Lett. B 697 398 (2011)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  10. W Javed, R Ali, R Babar and A Övgün Eur. Phys. J. Plus 134 511 (2019)

    Article  CAS  Google Scholar 

  11. R Ali, R Babar, M Asgher and X Tie-Cheng Int. J. Mod. Phys A 37 2250108 (2022)

    Article  ADS  CAS  Google Scholar 

  12. R Ali, M Asgher and M F Malik Mod. Phys. Lett. A 35 2050225 (2020)

    Article  ADS  Google Scholar 

  13. W Javed, R Ali, R Babar and A Övgün Chin. Phys. C 44 015104 (2020)

    Article  ADS  CAS  Google Scholar 

  14. R Ali, R Babar, Z Akhtar and A Övgün Results Phys. 46 106300 (2023)

    Article  Google Scholar 

  15. A Kempf J. Math. Phys. 38 1347 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  16. B Carr, J Mureika and P Nicolini JHEP 2015 52 (2015)

    Article  Google Scholar 

  17. A Kempf, G Mangano and R B Mann Phys. Rev. D 52 1108 (1995)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  18. G Gecim and Y Sucu Mod. Phys. Lett. A 33 1850164 (2018)

    Article  ADS  Google Scholar 

  19. G Gecim and Y Sucu Phys. Lett. B 773 391 (2017)

    Article  ADS  CAS  Google Scholar 

  20. G Gecim and Y Sucu Adv. High Energy Phys. 2018 8728564 (2018)

    Google Scholar 

  21. A Övgün and K Jusufi Eur. Phys. J. Plus 131 177 (2016)

    Article  Google Scholar 

  22. A Övgün and K Jusufi Eur. Phys. J. Plus 132 298 (2017)

    Article  Google Scholar 

  23. K Jusufi and A Övgün Int. J. Theor. Phys. 56 1725 (2017)

    Article  Google Scholar 

  24. J M Bardeen, B Carter and S W Hawking Commun. Math. Phys. 31 161 (1973)

    Article  ADS  Google Scholar 

  25. S W Hawking and D N Page Commun. Math. Phys. 87 577 (1983)

    Article  ADS  Google Scholar 

  26. J D Bekenstein Phys. Rev. D 7 2333 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  27. B Pourhassan and M Faizal JHEP 111 40006 (2022)

    Google Scholar 

  28. B Pourhassan, H Aounallah, M Faizal, S Upadhyay, S Soroushfar, Y O Aitenov and S S Wani JHEP 05 030 (2022)

    Article  ADS  Google Scholar 

  29. H Aounallah, B Pourhassan, S H Hendi and M Faizal Eur. Phys. J. C 82 351 (2022)

    Article  ADS  CAS  Google Scholar 

  30. B Pourhassan, S Upadhyay, H Saadat and H Farahani Nucl. Phys. B 928 415 (2018)

    Article  CAS  Google Scholar 

  31. B Pourhassan and M Faizal Nucl. Phys. B 913 834 (2016)

    Article  ADS  CAS  Google Scholar 

  32. M Faizal and M M Khalil Int. J. Mod. Phys. A 30 1550144 (2015)

    Article  ADS  Google Scholar 

  33. R K Kaul and P Majumdar Phys. Rev. Lett. 84 5255 (2000)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  34. S Carlip Class. Quant. Gravity 17 4175 (2000)

    Article  ADS  Google Scholar 

  35. R Ali, R Babar and P K Sahoo Phys. Dark Universe 35 100948 (2022)

    Article  Google Scholar 

  36. R Ali and M Asgher New Astronomy 93 101759 (2022)

    Article  CAS  Google Scholar 

  37. R Ali, K Bamba and S A A Shah Symmetry 11 631 (2019)

    Article  ADS  CAS  Google Scholar 

  38. R Ali, R Babar, M Asgher and S A A Shah Ann. Phys. 432 168572 (2021)

    Article  CAS  Google Scholar 

  39. R Ali, K Bamba, S A A Shah and M J Saleem Int. J. Mod. Phys. D 31 2250069 (2022)

    Article  ADS  Google Scholar 

  40. R Ali, K Bamba, M Asgher and S A A Shah Int. J. Mod. Phys. D 30 2150002 (2021)

    Article  ADS  Google Scholar 

  41. R Ali, R Babar and M Asgher Annalen der Physik 534 2200074 (2022)

    Article  ADS  Google Scholar 

  42. B Pourhassan, M Atashi, H Aounallah, S S Wani, M Faizal and B Majumder Nucl. Phys. B. 980 115842 (2022)

    Article  CAS  Google Scholar 

  43. I Sakalli and A Övgün Gen. Relativ. Gravit. 48 1 (2016)

    Article  ADS  Google Scholar 

  44. I Sakalli and A Övgün EPL 118 60006 (2017)

    Article  ADS  Google Scholar 

  45. W Javed, R Babar and A Övgün Mod. Phys Lett. A 34 1950057 (2019)

    Article  ADS  CAS  Google Scholar 

  46. A Anabalon, M Appels, R Gregory, D Kubiznak and A Övgün Phys. Rev. D 98 104038 (2018)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  47. D Singleton and S Wilburn Phys. Rev. Lett. 107 081102 (2011)

    Article  ADS  PubMed  Google Scholar 

  48. Q Q Jiang Phys. Rev. D 78 044009 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  49. W Javed, M Aqib and A Övgün Phys Lett. B 829 137114 (2022)

    Article  CAS  Google Scholar 

  50. A Övgün Phys Lett. B 820 136517 (2021)

    Article  MathSciNet  Google Scholar 

  51. X M Kuang, J Saavedra and A Övgün Eur. Phys. J. C 77 613 (2017)

    Article  ADS  Google Scholar 

  52. X Q Li and G R Chen Phys. Lett. B 751 34 (2015)

    Article  ADS  CAS  Google Scholar 

  53. X Q Li Phys. Lett. B 763 80 (2016)

    Article  ADS  CAS  Google Scholar 

  54. R Ghosh, C Fairoos and S Sarkar Phys. Rev. D 100 124019 (2019)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  55. A Övgün and K Jusufi Eur. Phys. J. Plus 131 177 (2016)

    Article  Google Scholar 

  56. I Sakalli, A Övgün and K Jusufi Astrophys Space Sci. 361 330 (2016)

    Article  ADS  Google Scholar 

  57. G Wentzel and Z Physik Zwecke der Wellenmechanik 38 518 (1926)

    Google Scholar 

  58. H A Kramers Zeitschrift für Physik 39 828 (1926)

    Article  ADS  Google Scholar 

  59. L Brillouin and C R Hebd Acad. Sci. 183 24 (1926)

    Google Scholar 

  60. W Javed, G Abbas and R Ali Eur. Phys. J. C 77 296 (2017)

    Article  ADS  Google Scholar 

  61. W Javed, R Ali and G Abbas Can. J. Phys. 97 176 (2019)

    Article  ADS  CAS  Google Scholar 

  62. A Övgün, W Javed and R Ali Adv. High Energy Phys. 2018 3131620 (2018)

    Google Scholar 

  63. J D Bekenstein Nuovo Cimento 4 737 (1972)

    Google Scholar 

  64. J M Bardeen, B Carter and S W Hawking Commun. Math. Phys. 31 161 (1973)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The paper was funded by the National Natural Science Foundation of China 11975145.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Tiecheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, R., Tiecheng, X., Aounallah, H. et al. Thermodynamics evaluation in Einstein–Gauss–Bonnet gravity like black holes. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03122-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03122-6

Keywords

Navigation