Skip to main content
Log in

Controlling optical multistability and all-optical switching in a four level Y-type atomic system

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We present a theoretical study on optical bistability (OB), optical multistability (OM), and all-optical switching in a four-level Y-type atomic system. The density matrix formalism is used to derive the Optical Bloch equations in order to find out the response of the probe laser field. The characteristics of OB and OM have been studied under unidirectional ring cavity configuration. The line parameters of D1 transition of 87Rb isotope have been used in the simulation. The system exhibits OM without consideration of any additional coherence effect like spontaneously generated coherence in the theoretical formalism. Threshold intensities and hysteresis widths of OB as well as OM can be effectively tuned by varying the intensity and frequency detuning of the coherent fields. Dynamic control of the probe laser pulse propagating through the medium has been investigated. We also demonstrate the conversion of a continuous wave input probe field into output switched pulse. The ON/OFF time of the switched probe pulse can also be controlled by tuning the field parameters. Such a system would be very useful in designing all-optical switching devices and optical storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H M Gibbs, S L McCall and T N C Venkatesan Phys. Rev. Lett. 36 1135 (1976)

    Article  ADS  CAS  Google Scholar 

  2. A Sasaki, M Taneya, H Yano and S Fujita IEEE Trans. Electron Dev. 31 805 (1984)

    Article  ADS  Google Scholar 

  3. D A B Miller et al. Phys. Lett. 45 13 (1984)

    CAS  Google Scholar 

  4. J G Mclnerney Proc. SPIE 836 244 (1987)

  5. H M Gibbs, S L McCall and T N C Venkatesan Opt. Eng. 19 463 (1980)

    Article  ADS  CAS  Google Scholar 

  6. N Peyghambarian and H M Gibbs Opt. Eng. 24 068 (1985)

    Article  ADS  Google Scholar 

  7. E Bernabeu, P M Mejias and R Martinez-Herrero Phys. Scr. 36 312 (1987)

    Article  ADS  CAS  Google Scholar 

  8. D F Wall and P Zoller Opt. Commun. 34 260 (1980)

    Article  ADS  Google Scholar 

  9. W Harshawardhan and G S Agarwal Phys. Rev. A 53 1812 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. S-q Gong, S-d Du, Z-z Xu and S-h Pan Phys. Lett. A 222 237 (1996)

    Article  ADS  CAS  Google Scholar 

  11. X-M Hu and Z-Z Xu J. Opt. B: Quantum Semiclass. Opt. 3 35 (2001)

    Article  ADS  CAS  Google Scholar 

  12. S Singh, J Rai, C M Bowden and A Postan Phys. Rev. A 45 5160 (1992)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. P Galatola, L A Lugiato, M G Porreca and P Tombesi Opt. Commun. 81 175 (1991)

    Article  ADS  CAS  Google Scholar 

  14. Z Chen, C Du, S Gong and Z Xu Phys. Lett. A 259 15 (1999)

    Article  ADS  CAS  Google Scholar 

  15. J Li Phys. D 228 148 (2007)

    Article  MathSciNet  Google Scholar 

  16. A Joshi, W Yang and M Xiao Phys. Lett. A 315 203 (2003)

    Article  ADS  CAS  Google Scholar 

  17. D-c Cheng, C-p Liu and S-q Gong Phys. Lett. A 332 244 (2004)

    Article  ADS  CAS  Google Scholar 

  18. Z Wang, A-X Chen, Y Bai, W-X Yang and R-K Lee J. Opt. Soc. Am. B 29 2891 (2012)

    Article  ADS  CAS  Google Scholar 

  19. A Joshi, W Yang and M Xiao Phys. Rev. A 68 015806 (2003)

    Article  ADS  Google Scholar 

  20. H Wang, D J Goorskey and M Xiao Phys. Rev. A 65 011801(R) (2001)

    Article  ADS  Google Scholar 

  21. A Joshi, A Brown, H Wang and M Xiao Phys. Rev. A 67 041801(R) (2003)

    Article  ADS  Google Scholar 

  22. A Joshi and M Xiao Phys. Rev. Lett. 91 143904 (2003)

    Article  ADS  PubMed  Google Scholar 

  23. A Joshi, W Yang and M Xiao Phys. Rev. A 70 041802(R) (2004)

    Article  ADS  Google Scholar 

  24. A Joshi, W Yang and M Xiao Opt. Lett. 30 905 (2005)

    Article  ADS  PubMed  Google Scholar 

  25. Z Wang and M Xu Opt. Commun. 282 1574 (2009)

    Article  ADS  CAS  Google Scholar 

  26. Z Chen, X Feng, Y Xu and M Y Yu Phys. Scr. 68 199 (2003)

    Article  ADS  CAS  Google Scholar 

  27. H Chang, H Wu, C Xie and H Wang Phys. Rev. Lett. 93 213901 (2004)

    Article  ADS  PubMed  Google Scholar 

  28. J-H Li, X-Y Lü, J-M Luo and Q-J Huang Phys. Rev. A 74 035801 (2006)

    Article  ADS  Google Scholar 

  29. M Sahari, S H Asadpour, H Mahrami and R Sadighi-Bonabi J. Lum. 131 1682 (2011)

    Article  ADS  Google Scholar 

  30. Y Chen, L Deng and A Chen Ann. Phys. 353 1 (2015)

    Article  ADS  CAS  Google Scholar 

  31. G Solookinejad, M Jabbari, M Nafar, E A Sangachin and S H Asadpour Int. J. Theor. Phys. 58 1359 (2019)

    Article  Google Scholar 

  32. H R Hamedi and S H Asadpour J. Appl. Phys. 117 183101 (2015)

    Article  ADS  Google Scholar 

  33. Z-H Xiao and K Kim Opt. Commun. 283 2178 (2010)

    Article  ADS  CAS  Google Scholar 

  34. S H Asadpour and A Eslami-Majd J. Lum. 132 1477 (2012)

    Article  ADS  CAS  Google Scholar 

  35. H R Hamedi, M Sahari, H Khoshima and G Juzeliunas J. Opt. Soc. Am. B 34 1923 (2017)

    Article  ADS  CAS  Google Scholar 

  36. H R Hamedi, S H Asadpour, M Sahrai, B Arzhang and D Taherkhani Opt. Quant. Electron. 45 295 (2013)

    Article  CAS  Google Scholar 

  37. S E Harris and Y Yamamoto Phys. Rev. Lett. 81 3611 (1998)

    Article  ADS  CAS  Google Scholar 

  38. M Yan, E G Rickey and Y Zhu Phys. Rev. A 64 041801(R) (2001)

    Article  ADS  Google Scholar 

  39. Y F Chen, Z H Tsai, Y C Liu and I A Yu Opt. Lett. 30 3207 (2005)

    Article  ADS  PubMed  Google Scholar 

  40. J Sheng, X Yang, U Khadka and M Xiao Opt. Exp. 19 17059 (2011)

    Article  CAS  Google Scholar 

  41. P Kumar and S Dasgupta Phys. Rev. A 94 023851 (2016)

    Article  ADS  Google Scholar 

  42. Y Duan, G Lin, S Zhang, Y Niu and S Gong Opt. Commun. 358 73 (2016)

    Article  ADS  CAS  Google Scholar 

  43. H Jafarzadeh Laser Phys. 27 025204 (2017)

    Article  ADS  Google Scholar 

  44. D H Minh, D L Van and B N Huy Opt. Commun. 426 553 (2018)

    Article  ADS  Google Scholar 

  45. H M Dong, N H Bang, D X Khoa and L V Doai Opt. Commun. 507 127731 (2022)

    Article  CAS  Google Scholar 

  46. K D Xuan, A N Van, D H Minh, D L Van and B N Huy Opt. Quant. Electron. 54 164 (2022)

    Article  Google Scholar 

  47. N T Anh, T D Thanh, N H Bang and H M Dong Pramana 95 37 (2021)

    Article  ADS  CAS  Google Scholar 

  48. D J Fulton, S Shepherd, R R Moseley, B D Sinclair and M H Dunn Phys. Rev. A 52 2302 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  49. S E Harris, J E Field and A Imamoglu Phys. Rev. Lett. 64 1107 (1990)

    Article  ADS  CAS  PubMed  Google Scholar 

  50. M O Scully and S Zubairy Quantum Optics (London: Cambridge University Press) (1997)

    Book  Google Scholar 

  51. R Bonifacio and L A Lugiato Phys. Rev. A 18 1129 (1978)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

Surajit Goldar acknowledges the Council of Scientific and Industrial Research (CSIR), New Delhi for providing a research fellowship (File no. 09/0202(13805)/2022-EMR-I). The authors thank Prof. Swapan Mandal (Department of Physics, Visva-Bharati) for many helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitava Bandyopadhyay.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garain, S., Goldar, S., Roy, S. et al. Controlling optical multistability and all-optical switching in a four level Y-type atomic system. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03088-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03088-5

Keywords

Navigation