Skip to main content
Log in

Study of the mass and the binding energy spectra of Λ hypernuclei

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Systematic investigation of energy levels of Λ hypernuclei enables physicists to determine a considerable number of details about the inner structure of these particles as well as the interaction dynamics of Λ nucleon. Of importance is to develop the theoretical tools to study spectroscopy of hypernuclei. In this regard, our aim is to specify the mass spectra and the binding energies of Λ hypernuclei in their ground and excited states. Then, we first present an analytical solution for the Bethe–Salpeter equation of single Λ hypernuclei taking the Woods–Saxon interaction potential. Through a good approximation, we present an analytical expression for the binding energies in the ground and excited states, i.e., 1p, 1d, 1f and 1g shells. We also give numerical results for Λ binding energies of light and heavy hypernuclei. Our numerical analysis is compared with experimental data so that good consistencies between both results confirm the approach used to analysis the Λ–nucleon interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. S Mohammad Moosavi Nejad and A Armat Mod. Phys. Lett. A 33 1850022 (2018).

    Article  Google Scholar 

  2. M Oertel, M Hempel, T Klahn and S Typel Rev. Mod. Phys. 89 015007 (2017).

    Article  ADS  Google Scholar 

  3. O Hashimoto and H Tamura Prog. Part. Nucl. Phys. 57 564 (2006).

    Article  ADS  Google Scholar 

  4. A Feliciello and T Nagae Rep. Prog. Phys. 78 096301 (2015).

    Article  ADS  Google Scholar 

  5. E Hiyama et al Phys. Rev. C 78 054316 (2008).

    Article  ADS  Google Scholar 

  6. D J Millener Nucl. Phys. A 804 84 (2008).

    Article  ADS  Google Scholar 

  7. A Li, E Hiyama, X R Zhou and H Sagawa Phys. Rev. C 87 014333 (2013).

    Article  ADS  Google Scholar 

  8. Z Rudy et al Z. Phys. A 351 217 (1995).

    Article  ADS  Google Scholar 

  9. A S Botvina and J Pochodzalla Phys.Rev. C 76 024909 (2007).

    Article  ADS  Google Scholar 

  10. T Gaitanos Lett. B 675 297 (2009).

    Article  ADS  Google Scholar 

  11. A S Botvina, K K Gudima and J Pochodzalla Phys. Rev. C 88 054605 (2013).

    Article  ADS  Google Scholar 

  12. S Mohammad Moosavi Nejad and A Armat Int. J. Mod. Phys. E 28 1950033 (2019).

    Article  Google Scholar 

  13. N Buyukcizmeci et al Phys. Rev. C 98 064603 (2018).

    Article  ADS  Google Scholar 

  14. T R Saito et al Nucl. Phys. A. 881 218 (2012).

    Article  ADS  Google Scholar 

  15. B I Abelev et al Science 328 58 (2010).

    Article  ADS  Google Scholar 

  16. B Donigus et al Nucl. Phys. A 904 547c (2013).

    Article  ADS  Google Scholar 

  17. T A Armstrong et al Phys. Rev. C 47 1957 (1993).

    Article  ADS  Google Scholar 

  18. H Ohm et al Phys. Rev. C 55 3062 (1997).

    Article  ADS  Google Scholar 

  19. H Bando, T Motoba, M Sotona and J Zofka Phys. Rev. C 39 587 (1989).

    Article  ADS  Google Scholar 

  20. R Shyam Phys. A 764 313 (2006).

    Google Scholar 

  21. A Gal, J M Soper and R H Dalitz Ann. Phys. 63 53 (1971).

    Article  ADS  Google Scholar 

  22. A Esser et al Phys. Rev. Lett. 114 232501 (2015).

    Article  ADS  Google Scholar 

  23. P Vilain et al Nucl. Phys. B 13 451 (1970).

    Article  ADS  Google Scholar 

  24. G Bohm et al Nucl. Phys. B 4 511 (1968).

    Article  ADS  Google Scholar 

  25. A Esser et al Phys Rev. Lett 114 232501 (2015).

    Article  ADS  Google Scholar 

  26. R H Dalitz and F Von Phys. Lett. 10 153 (1964).

    Article  ADS  Google Scholar 

  27. H Tamura, Y Ma, N Chiga, K Hosomi and T Koike Nucl. Phys. A 835 3 (2010).

    Article  ADS  Google Scholar 

  28. M Hjorth-Jensen and A Polls Phys. A 605 458 (1996).

    Google Scholar 

  29. I Vidana, A Polls, A Ramos and M Hjorth-Jensen Nucl. Phys. A 644 201 (1998).

    Article  ADS  Google Scholar 

  30. C H Cai and L Li Lett. 64 448 (2003).

    Google Scholar 

  31. A Armat and H Hassanabadi Mod. Phys. Lett. A 31 1650084 (2016).

    Article  ADS  Google Scholar 

  32. A Armat and S Mohammad J. Mod. Phys. E 28 1950011 (2019).

    Article  ADS  Google Scholar 

  33. D H Davis Nucl. Phys. A 754 3c (2005).

    Article  ADS  Google Scholar 

  34. H Hotchi et al Phys. Rev. C 64 044302 (2001).

    Article  ADS  Google Scholar 

  35. P H Pile et al Phys. Rev. Lett. 66 2585 (1991).

    Article  ADS  Google Scholar 

  36. H Tamura and R S Hayano Theor. Phys. Suppl. 117 1 (1994).

    ADS  Google Scholar 

  37. M Juric et al Nucl. Phys. B 52 1 (1973).

    Article  ADS  Google Scholar 

  38. R Bertinhz et al Nucl. Phys. A 368 365 (1981).

    Article  ADS  Google Scholar 

  39. F Cusanno et al Phys. Rev. Lett. 103 202501 (2009).

    Article  ADS  Google Scholar 

  40. C G Koutroulos J. Phys. G Nucl. Part. Phys. 15 303 (1989).

    Article  Google Scholar 

  41. M Abdallah et al Lett. B 834 137449 (2022).

    Article  Google Scholar 

  42. S Mohammad Moosavi Nejad and A Armat Indian J. Phys. 96 1433 (2022).

    Article  ADS  Google Scholar 

  43. M Danysz et al Phys. Rev. Lett. 11 29 (1963).

    Article  ADS  Google Scholar 

  44. E Friedman and A Gal Phys. Lett. B 837 137669 (2023).

    Article  Google Scholar 

  45. C H Cai and P Z Ning Chin. J. Nucl. Phys. 19 6 (1997).

    Google Scholar 

  46. J Pniewski and D Zieminska Nukleonika 23 797 (1978).

    Google Scholar 

  47. P A Zyla et al (Particle Data Group) PTEP 2020 08301 (2020).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Armat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Armat, A., Moosavi Nejad, S.M. Study of the mass and the binding energy spectra of Λ hypernuclei. Indian J Phys (2023). https://doi.org/10.1007/s12648-023-03047-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-023-03047-6

Keywords

Navigation