Skip to main content
Log in

Microwave attenuation measurement as a diagnostic method to estimate electron density in planar surface barrier discharge plasma

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We report the experimental measurements of X-Band (at 10 GHz) microwave attenuation after interacting with planar surface barrier discharge plasma. Such measurements are found suitable to diagnose the plasma to estimate its electron plasma density. We have recorded microwave signals that travel through plasma and are reflected from the surface discharge panel. The attenuation in the microwave signal is observed following the discharge current variation. The electron plasma density obtained through microwave diagnostics is compared with the spectroscopic measurement. Both the results match well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J R Roth Industrial Plasma Engineering (Bristol: IOP) (1995)

    Book  Google Scholar 

  2. R Brandenburg Plasma Sour. Sci. Tech. 26 1 (2017)

    Google Scholar 

  3. A K Srivastava and G Prasad J. Electrost. 72 140 (2014)

    Article  Google Scholar 

  4. F Massines, A Rabehi, P Decomps and R Ben Gadri J. Appl. Phys. 83 2950 (1998)

    Article  ADS  Google Scholar 

  5. U Kogelschatz Plasma Chem. Plasma Process. 23 1 (2003)

    Article  Google Scholar 

  6. S Kanazawa, M Kogoma, T Moriwaki and S Okazaki J. Phys. D 21 838 (1988)

    Article  ADS  Google Scholar 

  7. T Yokoyama, M Kogoma, T Moriwaki and S Okazaki J. Phys. D 23 1125 (1990)

    Article  ADS  Google Scholar 

  8. A K Srivastava, G Prasad, M K Garg, V Kumar, M B Chaudhuri and R Prakash IEEE Trans. Plasma Sci. 35 1135 (2007)

    Article  ADS  Google Scholar 

  9. B Eliasson, M Hirth and U Kogelschatz J. Phys. D: Appl. Phys. 20 1421 (1987)

    Article  ADS  Google Scholar 

  10. F Massines and G Gauda J. Phys. D: Appl. Phys. 31 3411 (1998).

    Article  ADS  Google Scholar 

  11. R McAdams J. Phys. D: Appl. Phys. 34 2810 (2001)

    Article  ADS  Google Scholar 

  12. J P Boeuf J. Phys. D: Appl. Phys. 36 R53–R79 (2003)

    Article  ADS  Google Scholar 

  13. A K Srivastava, S Sharma and H K Dwivedi J. Electrost. 68 394 (2010)

    Article  Google Scholar 

  14. S Beleznai, G Mihajlik, A Agod, I Maros, R Juhasz, Z Nemeth, L Jakab and P Richter J. Phys. D: Appl. Phys. 39 3777 (2006)

    Article  ADS  Google Scholar 

  15. R J Vidmar IEEE Trans. Plasma Sci. PS-18 733 (1990)

    Article  ADS  Google Scholar 

  16. K R Stalder, R J Vidmar and D J Eckstrom J. Appl. Phys. 72 5089 (1992)

    Article  ADS  Google Scholar 

  17. A K Srivastava, G Prasad, P K Atrey and V Kumar J. Appl. Phys. 103 033302 (2008)

    Article  ADS  Google Scholar 

  18. W W Destler, J E DeGrange, H H Fleischmann, J Rodgers and Z Sedalov J. Appl. Phys. 69 6313 (1991)

    Article  ADS  Google Scholar 

  19. M K Howlader, Y Yang and J R Roth IEEE Trans. Plasma Sci. 33 1093 (2005)

    Article  ADS  Google Scholar 

  20. J R Roth Phys. Plasmas 10 2117 (2003)

    Article  ADS  Google Scholar 

  21. J R Roth and D M Sherman AIAA J. 38 1166 (2000)

    Article  ADS  Google Scholar 

  22. L Dan, L X Guo, J T Li, W Chen, X Yan and Q Q Huang Phys. Plasmas 24 093703 (2017)

    Article  ADS  Google Scholar 

  23. Y Zhang, X He, J Chen, Y Chen, X Zeng, X Ni, J Lu and Z Shen IEEE Trans. Plasma Sci. 42 2253 (2014)

    Article  ADS  Google Scholar 

  24. S Marriman et al AIAA J. 39 1547 (2001)

    Article  ADS  Google Scholar 

  25. B N Ganguly et al Phys. Lett. A 230 218 (1997)

    Article  ADS  Google Scholar 

  26. S P Kuo et al Phys. Plasmas 7 1345 (2000)

    Article  ADS  Google Scholar 

  27. M Laroussi IEEE Trans. Plasma Sci. 37 714 (2009)

    Article  ADS  Google Scholar 

  28. G Fridman, G Friedman, A Gutsol, A B Shekhter, V N Vasilets and A Fridman Plasma Process. Polym. 5 503 (2008)

    Article  Google Scholar 

  29. G Gao, L Peng, W Wei, C Li and G Wu Phys. Plasmas 24 013510 (2017)

    Article  ADS  Google Scholar 

  30. N Bednar, J Metovic and G Stojanovic J. Electrost. 71 1068 (2013)

    Article  Google Scholar 

  31. M Stefecka, D Korzec, M Siry, Y Imahori and M Kando Sci. Technol. Adv. Mater. 2 587 (2001)

    Article  Google Scholar 

  32. R Zhang, R J Zhan, X H Wen and L Wang Plasma Sour. Sci. Technol. 12 590 (2003)

    Article  ADS  Google Scholar 

  33. N D Wilde, H Xu, N G Vega et al Appl. Phys. Lett. 118 154102 (2021)

    Article  ADS  Google Scholar 

  34. B Gilbert, A Dickenson, J L Walsh and M I Hasan J. Phys. D: Appl. Phys. 54 175202 (2021)

    Article  ADS  Google Scholar 

  35. B Gilbert, A Dickenson, J L Walsh and M I Hasan Plasma Process. Polym. (2021) https://doi.org/10.1002/ppap.202100181

    Article  Google Scholar 

  36. F Kogelheide, B Offerhaus, N Bibnov, P Krajinski, L Schucke, J Schulze, K Stapelmann and P Awakowicz Plasma Process. Polym. (2019) https://doi.org/10.1002/ppap.201900126

    Article  Google Scholar 

  37. M A Heald and C B Wharton Plasma Diagnostics with Microwaves (Huntington: Robert E. Krieger) (1978)

    Google Scholar 

  38. Y P Raizer Gas Discharge Physics (Berlin: Springer) (1990)

    Google Scholar 

Download references

Acknowledgements

The author expresses sincere thanks and gratitude to Dr. K. S. Ganesh Prasad, Director, U-IAR, Gandhinagar, Dr. Vinay Kumar, and Mr. P. K. Atrey of the Institute for Plasma Research, Gandhinagar for providing all possible experimental support and also to guide for theoretical understanding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Kumar Srivastava.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, A.K. Microwave attenuation measurement as a diagnostic method to estimate electron density in planar surface barrier discharge plasma. Indian J Phys 98, 2571–2577 (2024). https://doi.org/10.1007/s12648-023-02988-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02988-2

Keywords

Navigation