Skip to main content
Log in

Term energies and radiative atomic data of carbon-like ions Na VI and Al VIII

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Excitation energies belonging to the (1s2)2s22p2, 2s22p3p, 2s2p3, 2s22p3s, and 2s22p3d configurations of carbon-like Na VI and Al VIII have been calculated with the multi-configuration Rayleigh–Ritz variation method and restricted variation method, as well as wavelengths, line strengths, oscillator strengths, transition rates for electric dipole transitions among these terms. High-accuracy calculations have been performed using a moderate scale of Slater basis function and accurate treatments of relativity, electron correlation, and quantum electrodynamic (QED) effects. The line strengths, transition oscillator strengths, and transition probabilities for the electric dipole transitions are determined. Deviations of line strengths between the length and velocity gauges are discussed, as well as with the experimentally compiled values from the National Institute for Standards and Technology (NIST) and other theoretical data wherever available. Furthermore, the accuracy of each electric dipole transition is assessed. The present results are accurate enough for identification of emission lines involving these terms and are also useful for precise spectral modeling and diagnosing in astrophysical and laboratory plasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. U Feldman and G A Doschek At. Data Nucl. Data Tables 93 779 (2007)

    Article  ADS  CAS  Google Scholar 

  2. S Schiffmann, T Brage, P G Judge et al Astrophys J. 923 186 (2021)

    Article  ADS  CAS  Google Scholar 

  3. R Si, X L Guo, K Wang et al Astron. Astrophys. 592 A141 (2016)

    Article  Google Scholar 

  4. P K Raju, B N Dwivedi and A K Gupta Solar Phys. 149 289 (1994)

    Article  ADS  CAS  Google Scholar 

  5. L S Lyubimkov et al Astrophys. 56 517 (2013)

    Article  Google Scholar 

  6. R Steinbrügge, S Kühn, F Nicastro et al Astrophys. J. 941 188 (2022)

    Article  ADS  Google Scholar 

  7. B Denne and E Hinno Phys. Rev. A 29 3442 (1984)

    Article  ADS  CAS  Google Scholar 

  8. AY Faenov, SA Pikuz and AS Shlyaptseva Phys. Scr. 49 41 (1994)

    Article  ADS  CAS  Google Scholar 

  9. U Feldman, W Curdt, E Landi and K Wilhelm Astrophys J. 544 508 (2000)

    Article  ADS  CAS  Google Scholar 

  10. M F Gu, P Beiersdorfer and J K Lepson Astrophys J. 732 91 (2011)

    Article  ADS  Google Scholar 

  11. P Beiersdorfer, G V Brown, N Hell et al Phys. Rev. A. 100 032516 (2019)

    Article  ADS  CAS  Google Scholar 

  12. W Q Wen, Z K Huang, S X Wang et al Astrophys J. 905 36 (2020)

    Article  ADS  CAS  Google Scholar 

  13. K M Aggarwal Astrophys. J. Suppl. Ser. 118 589 (1998)

    Article  ADS  CAS  Google Scholar 

  14. K M Aggarwal, F P Keenan and A Z Msezane Astrophys J. Suppl. Ser. 136 763 (2001)

    Article  ADS  CAS  Google Scholar 

  15. G Tachiev and C F Fischer Can. J. Phys. 79 955 (2001)

    Article  ADS  CAS  Google Scholar 

  16. C F Fischer and G Tachiev At. Data Nucl. Data Tables 87 1 (2004)

    Article  ADS  Google Scholar 

  17. F Peng, S Q Song and G Jiang Phys. Scr. 76 501 (2007)

    Article  ADS  CAS  Google Scholar 

  18. B L Deng, G Jiang, L Zhang et al Phys. Scr. 85 045303 (2012)

    Article  ADS  Google Scholar 

  19. P Palmeri, P Quinet, C Mendoza et al Astron. Astrophys. 525 A59 (2011)

    Article  Google Scholar 

  20. K Wang, D F Li, H T Liu et al Astrophys. J. Suppl. Ser. 215 26 (2014)

    Article  ADS  Google Scholar 

  21. P Jönsson, P Rynkun and G Gaigalas At. Data Nucl. Data Tables 97 648 (2011)

    Article  ADS  Google Scholar 

  22. S Verdebout, C Nazé, P Jönsson, P Rynkun, M Godefroid and G Gaigalas At. Data Nucl. Data Tables 100 1111 (2014)

    Article  ADS  CAS  Google Scholar 

  23. C Nazé, S Verdebout, P Rynkun et al At. Data Nucl. Data Tables 100 1197 (2014)

    Article  ADS  Google Scholar 

  24. I Khatril and A Goyal Eur. Phys. J. D. 76 206 (2022)

    Article  ADS  Google Scholar 

  25. J Q Li, C Y Zhang, G Del Zanna et al Astrophys. J. Suppl. Ser. 260 50 (2022)

    Article  ADS  Google Scholar 

  26. A Almodlej, R A B Alraddadi and N B Nessib Eur. P. J. Plus 133 3799 (2018)

    Google Scholar 

  27. A Almodlej, H Alrashed, N Ben Nessib and M S Dimitrijevć Mon. Not. R. Astron. Soc. 00 1 (2021)

    Google Scholar 

  28. J Mao and N R Badnell J. Phys.: Conf. Ser. 1412 142010 (2020)

    Google Scholar 

  29. G Del Zanna, K P Dere, P R Young and E Landi Astrophys. J. 909 38 (2021)

    Article  ADS  Google Scholar 

  30. A. Kramida, Y. Ralchenko, J. Reader, and ASD Team. NIST Atomic Spectra Database (ver.5.8). Available: https://physics.nist.gov/asd [2022, November 26]. National Institute of Standards and Technology, Gaithersburg, MD

  31. Y Sun, F Hu, C C Sang et al J. Quant. Spectrosc. Radiat. Transf. 217 388 (2018)

    Article  ADS  CAS  Google Scholar 

  32. Y Sun, F Hu, C C Sang et al J. Electron. Spectrosc. Relat. Phenom. 233 83 (2019)

    Article  CAS  Google Scholar 

  33. X W Zhu and K T Chung Phys. Rev. A 50 3818 (1994)

    Article  ADS  CAS  PubMed  Google Scholar 

  34. B Lin, H G Berry, T Shibata et al Phys. Rev. A 67 062507 (2003)

    Article  ADS  Google Scholar 

  35. W. C. Martin, W. L. Wiese. Atomic, molecular, and optical physics handbook (version 2.2) Available: https://www.nist.gov/pml/atomic-spectroscopy-compendium-basic-ideas-notation-data-and-formulas

  36. D A Verner and E M Verner J. Ferland. At. Data Nucl. Data Tables 64 1 (1996)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China, under grant No. 12004325, and Natural Science Foundation of Jiangsu Province under grant No. BK20210076. Yan Sun was supported by the 333 high-level talents and Six Talent Peaks project of Jiangsu Province of China under grant No. JY-105. Dongdong Liu and Feng Hu supported by the QingLan project of Jiangsu Province of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Hu, F., Chen, Q. et al. Term energies and radiative atomic data of carbon-like ions Na VI and Al VIII. Indian J Phys 98, 1561–1572 (2024). https://doi.org/10.1007/s12648-023-02944-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02944-0

Keywords

Navigation