Skip to main content
Log in

Electronic structures and optical responses of Sb2S3, Ag2S, AgSbS2, and Ag3SbS3 compounds: an assessment of DFT calculations

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

A DFT investigation was made to explore the electronic structures and optical responses of the binary antimony compounds Sb2S3 and Ag2S and their ternary compounds AgSbS2 and Ag3SbS3. The electronic band structures and state densities have revealed indirect and direct band gaps of 1.492 eV and 1.64 eV for Ag3SbS3 and AgSbS2, respectively, while direct band gap of 1.546 eV and 1.18 eV are obtained for the binary Sb2S3 and Ag2S. We distinguish the role of the Sb antimony atom that can plays an important role in the bond stabilization of the studied compounds. The optoelectronic efficiency was also determined by calculating various optical parameters as a function of wavelength. Our results are in good agreement with the available theoretical and experimental data. Overall, the results suggest that these materials are potential candidates for photovoltaic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G Busch Eur. J. Phys. 10 254 (1989)

    CAS  Google Scholar 

  2. F Laeri, F Schüth, U Simon, and M Wark, Host-Guest-Systems Based on Nanoporous Crystals, (Weinheim: John Wiley & Sons), (2003)

  3. L Lukasiak and A Jakubowski J. Telecommun. Inform. Technol. 1 3 (2010)

    Google Scholar 

  4. S I Boldish and W B White American Mineralogist 83 865 (1998)

    CAS  Google Scholar 

  5. M I Medina-Montes, L A Baldenegro-Pérez, M Morales-Luna, T G Sánchez, D Santos-Cruz, S A Mayén-Hernández and J Santos-Cruz Mater. Sci. Semicond. Process. 137 106167 (2022)

    CAS  Google Scholar 

  6. C William Keighin, and R M Honea, Mineral. Deposita 4 153 (1969)

  7. A Nadukkandy, S Devasia, P Abraham and S Shaji Mater. Sci. Semicond. Process. 135 106074 (2021)

    CAS  Google Scholar 

  8. F I Ezema, S C Ezugwu, P U Asogwa and A B C Ekwealor J. Ovonic Res. 5 145 (2009)

    CAS  Google Scholar 

  9. H Koc Amirullah M Mamedov, E Deligoz, and H Ozisik, Solid state Sciences 14 1211 (2012)

  10. S Meliani, S Kouidri, H Rached and M EL Keurti Solid State Commun. 357 114973 (2022)

    CAS  Google Scholar 

  11. T-Y Liang, S-J Chan, A S Patra, P-L Hsieh, Y-A Chen, H-H Ma, M H Huang and A C S Appl Mater. Interfaces 13 11515 (2021)

    CAS  Google Scholar 

  12. S-J Lee, S-J Sung, K-J Yang and J-K Kang ACS Appl. Energy Mater. 3 12644 (2020)

    CAS  Google Scholar 

  13. E Saksornchai, J Kavinchan, S Thongtem and T Thongtem Chalcogenide Letters 14 483 (2017)

    CAS  Google Scholar 

  14. S Berri, D Maouche, N Bouarissa and Y Medkour Mater. Sci. Semicond. Process. 16 1439 (2013)

    CAS  Google Scholar 

  15. T Daniel, J Henry, K Mohanraj and G Sivakumar Mater. Chem. Phys. 181 415 (2016)

    CAS  Google Scholar 

  16. C-L Chou, N Suriyawong, B Aragaw, J-B Shi, M-W Lee and J Electrochem Soc. 163 H445 (2016)

    CAS  Google Scholar 

  17. A M Meléndez, R Arroyo and I González ChemPhysChem 11 2879 (2010)

    PubMed  Google Scholar 

  18. W A Harrison Phys. Rev. B 8 4487 (1973)

    CAS  Google Scholar 

  19. P Blaha, K Schwarz, F Tran, R Laskowski, G K H Madsen and L D Marks J. Chem. Phys. 152 074101 (2020)

    CAS  PubMed  Google Scholar 

  20. D J Singh, and L Nordstrom, Planewaves, Pseudopotentials, and the LAPW Method, (New York: Springer Science & Business Media) (2006)

  21. S Al-Qaisi et al. Mater. Sci. Semicond. Process. 150 106947 (2022)

    CAS  Google Scholar 

  22. A A Belkacem et al. Results in Physics 38 105621 (2022)

  23. A Tagrerout, H Rached, M Drief, Y Guermit, S Al-Qaisi, M Caid and D Rached Comput. Condens. Matter 31 e00670 (2022)

    Google Scholar 

  24. A Azzouz Rached, M A Hadi, H Rached, T Hadji, D Rached, and A Bouhemadou, J. Alloys Compd. 885 160998 (2021)

  25. H Rached Int. J. Quantum Chem. 121 e26647 (2021)

    CAS  Google Scholar 

  26. Q Mahmood et al. J. Solid State Chem. 301 122294 (2021)

    CAS  Google Scholar 

  27. Q Mahmood et al. J. Phys. Chem. Solids 167 110742 (2022)

    CAS  Google Scholar 

  28. W Kohn and L J Sham Phys. Rev. 140 A1133 (1965)

    Google Scholar 

  29. J P Perdew, S Burke and M Ernzerhof Phys. Rev. Lett. 77 3865 (1996)

    CAS  PubMed  Google Scholar 

  30. T Ben Nasr, H Maghraoui-Meherzi, H Ben Abdallah, and R Bennaceur, Phys. B: Condens. Matter 406 287 (2011)

  31. A Radzwan, A Lawal, A Shaari, I Muhammad, S T Ahams and R Ahmed Comput. Condens. Matter 24 e00477 (2020)

    Google Scholar 

  32. T Ben Nasr, H Maghraoui-Meherzi, H Ben Abdallah, and R Bennaceur, Solid State Sci. 26 65 (2013)

  33. R Sadanaga and S Sueno Mineralogical J. 5 124 (1967)

    CAS  Google Scholar 

  34. S Block, G J Piermarini, R G Murno and E Fuller Physica A Stat. Mech. Appl. 156 341 (1989)

    CAS  Google Scholar 

  35. X He, D J Singh, P Boon-on, M-W Lee and L Zhang J. Am. Chem. Soc. 140 18058 (2018)

    CAS  PubMed  Google Scholar 

  36. R Caracas and X Gonze Phys. Chem. Miner. 32 295 (2005)

    CAS  Google Scholar 

  37. T Ben Naser, H Maghraoui-Meherzi, and N Kamoun-Turki, J. Alloys Compd. 663 123 (2016)

  38. L Guo, B Zhang, S Li, Q Zhang, M Buettner, L Li, X Qian and F Yan APL Materials 7 041105 (2019)

    Google Scholar 

  39. B Zhang, X Qian and A C S Appl Energy Mater. 5 492 (2022)

    CAS  Google Scholar 

  40. F Z Fouddad, S Hiadsi, L Bouzid, Y F Ghrici and K Bekhadda Mater. Sci. Semicond. Process. 107 104801 (2020)

    CAS  Google Scholar 

  41. M S Diware et al. Appl. Phys. Lett. 107 171905 (2015)

    Google Scholar 

  42. C Du, J Tian and X Liu Mater. Chem. Phys. 249 122961 (2020)

    CAS  Google Scholar 

  43. N Hosni, N Bouaniza, W Selmi, K Assili and H Maghraoui-Meherzi J. Alloys Compd. 778 913 (2018)

    Google Scholar 

  44. C Hu, B Zhang, B-H Lei, S Pan, Z Yang and A C S Appl Mater. Interfaces 10 26413 (2018)

    CAS  Google Scholar 

  45. B Zhou, M Li, Y Wu, C Yang, W-H Zhang and C Li Chem. Eur. J. 21 11143 (2015)

    CAS  PubMed  Google Scholar 

  46. M Lawal, A Radzi Mat Isah, and M A. Saeed, Proceeding of 2nd International Science Postgraduate Conference ISPC2014 (Faculty of Science, Universiti Teknologi Malaysia) (2014)

  47. R Kondrotas, C Chen and J Tang Joule 2 857 (2018)

    CAS  Google Scholar 

  48. J Feng, X Li, Z Shi, C Zheng, X Li, D Leng, Y Wang, J Liu and L Zhu Adv. Optical Mater 8 1901762 (2020)

    CAS  Google Scholar 

  49. Ali H Reshak, Z Charif, and H Baaziz, Eur. Phys. J. B 60 463 (2007).

  50. V Borisovich Bobrov, S A Trigger, G J F van Heijst, and P P J M Schram, Europhysics Letters 901 0003 (2010)

  51. A M Fox Am. J. Phys. 701 269 (2002)

    Google Scholar 

  52. A Settouf, H Rached, N Benkhettou and D Rached Comput. Condens. Matter 19 e00377 (2019)

    Google Scholar 

  53. M Ould Moussa et al. Appl. Physics A 128 231 ( 2022)

  54. Y Xu, L Yuan, R Xie, L Wang, Q Liang, Z Geng, H Liu and K Huang Cryst. Growth Des. 18 864 (2018)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Rached.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benslimane, A., Kouidri, S., Rached, H. et al. Electronic structures and optical responses of Sb2S3, Ag2S, AgSbS2, and Ag3SbS3 compounds: an assessment of DFT calculations. Indian J Phys 98, 955–966 (2024). https://doi.org/10.1007/s12648-023-02884-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02884-9

Keywords

Navigation