Skip to main content
Log in

Analysis of dielectric parameters in paraelectric-ferroelectric biphasic region of antiferroelectric liquid crystal mixture

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The dielectric characterization of induced antiferroelectric liquid crystal mixture W-132A was carried out at various temperatures. Dielectric strengths, relaxation frequencies and distribution parameters of a sample oriented in planar direction were evaluated from the dielectric spectra in a wide frequency spectrum of 0.1 Hz to 10 MHz. Two dielectric dispersion modes were detected in the SmA* phase and biphasic region of SmA*-SmC* phase. The high frequency dielectric dispersion was associated to soft mode whereas low frequency dielectric dispersion was attributed to space charge polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y Takanishi, S Noma and J Yamamoto Appl. Phys. Express 6 081701 (2013)

    Article  ADS  Google Scholar 

  2. H Hayashi et al. Jpn. J. Appl. Phys. 34 5438 (1995)

    Article  ADS  Google Scholar 

  3. Z Feng and K Ishikawa Opt. Express 26 31976 (2018)

    Article  ADS  Google Scholar 

  4. S T Lagerwall Ferroelectric and Antiferroelectric Liquid Crystals (Weinheim: Germany Wiley-VCH) (1999)

    Book  Google Scholar 

  5. P Rudquist, J P F Lagerwall, J G Meier, K D’have and S T Lagerwall Phys. Rev. 66 061708 (2002)

    Google Scholar 

  6. S Lagerwall et al. Adv. Func. Mater. 11 87 (2001)

    Article  Google Scholar 

  7. A D L Chandani, T Hagiwarra, Y Suzuki, Y Ouchi, H Takezoe and A Fukuda Jpn J. Appl. Phys. 27 L729 (1988)

    Article  Google Scholar 

  8. A D L Chandani et al. Jpn. J. Appl. Phys. 28 L1261 (1989)

    Article  Google Scholar 

  9. A D L Chandani, E Gorecka, Y Ouchi, H Takezoe and A Fukuda Jpn. J. Appl. Phys. 28 L1265 (1989)

    Article  ADS  Google Scholar 

  10. L Beresnev and W Haase Opt. Mater. 9 201 (1998)

    Article  ADS  Google Scholar 

  11. A Debnath, D Goswami and P K Mandal AIP Conf. Proc. 1942 020001 (2018)

    Article  Google Scholar 

  12. M Tykarska, M Czerwiński and A Drzewicz J. Mol. Liq. 292 110379 (2019)

    Article  Google Scholar 

  13. A Chandran et al. RSC Adv. 6 53873 (2016)

    Article  ADS  Google Scholar 

  14. A K Srivastava, D-Y Kim, J Kim, J Jeong, J-H Lee, K-U Jeong and V Singh Liq. Cryst. 43 920 (2016)

    Article  Google Scholar 

  15. A K Srivastava, S Yeo, J Kim, J Jeong, E-J Choi, V Singh and J-H Lee Curr. Appl. Phys. 17 6 858 (2017)

    Article  ADS  Google Scholar 

  16. D A Dunmur Relaxation Phenomena, Liquid Crystals, Magnetic Systems, Polymers, High-Tc Superconductors Metallic Glasses (Heidelberg: Germany Springer-Verlag) (2003)

    Google Scholar 

  17. A K Srivastava, V K Agrawal, R Dabrowski, J M Otón and R Dhar J. Appl. Phys. 98 013543 (2005)

    Article  ADS  Google Scholar 

  18. P T Dang, A K Srivastava, E-J Choi and J-H Lee Curr. Appl. Phs. 23 8 (2021)

    Article  ADS  Google Scholar 

  19. F Gouda, K Skarp and S T Lagerwall Ferroelectrics 113 165 (1991)

    Article  ADS  Google Scholar 

  20. A Mukherjee, S L Srivastava and L A Bersesnev Ferroelectrics 247 283 (2000)

    Article  ADS  Google Scholar 

  21. Y Takanishi, K Hiroka, V K Agrawal, H Takezoe, A Fakuda and M Matsushita Jpn. J. Appl. Phys. 30 2023 (1991)

    Article  ADS  Google Scholar 

  22. H Uehara, Y Hanakai, J Hatano, S Satio and K Murashiro Jpn. J. Appl. Phys. 34 5424 (1995)

    Article  ADS  Google Scholar 

  23. K Merkel, A Kocot, J K Vij, G H Meh and T Meyer Phys. Rev. E 73 051702 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are thankful to Professor R. Dabrowski, Military University of Technology, Warsaw -00-908, Poland for providing the AFLC mixture. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1A2C1092509).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, A.K., Kumar, A., Tripathi, P.K. et al. Analysis of dielectric parameters in paraelectric-ferroelectric biphasic region of antiferroelectric liquid crystal mixture. Indian J Phys 98, 569–575 (2024). https://doi.org/10.1007/s12648-023-02831-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02831-8

Keywords

Navigation