Skip to main content
Log in

IV characteristics of the single quantum dot within impurity Anderson model: the role of correlation regime

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Charge current through a single quantum dot coupled to a source and drain with an applied bias voltage is studied. The current–voltage characteristics are calculated using our treatment within the Anderson model. The dependence of the current–voltage characteristics on the Coulomb energy, temperature, gate voltage, and magnetic field is examined. A clear dependence of all the practical requirements, functions and parameters considered in our work to describe the electron transport throughout the quantum dot is highlighted. Our results can be experimentally realized and it is easy to tune practical parameters to determine the correlation regime for a certain spin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. N A Zimbovskaya and M R Pederson Phys. Rep. 509 1 (2011)

    Article  ADS  Google Scholar 

  2. N A Zimbovskaya and A Nitzan J. Chem. Phys. 148 024303 (2018)

    Article  ADS  Google Scholar 

  3. J O Thomas et al Nat. Commun. 10 4628 (2019)

    Article  ADS  Google Scholar 

  4. N A Zimbovskaya Phys. Rev. B 78 035331 (2008)

    Article  ADS  Google Scholar 

  5. B R Bułka and J Łuczak Entropy 21 527 (2019)

    Article  ADS  Google Scholar 

  6. M K Shamer Indian J. Phys. 93 583 (2019)

    Article  ADS  Google Scholar 

  7. N A Zimbovskaya J. Phys. Condens. Matter 32 325302 (2020)

    Article  Google Scholar 

  8. L W Tang and W G Mao Front. Phys. 8 616107 (2021)

    Article  Google Scholar 

  9. J Charoenpakdeel, O Suntijitrungruang and S Boonchu Sci. Rep. 10 18949 (2020)

    Article  Google Scholar 

  10. Y Meir Rev. Lett 70 2601 (1993)

    Article  ADS  Google Scholar 

  11. T Fujisawa Rev. B 76 041302 (2007)

    Article  Google Scholar 

  12. L P Kouwenhoven Prog. Phys. 64 701 (2001)

    Article  ADS  Google Scholar 

  13. A Levy et al J. Phys. Chem. C 123 13538 (2019)

    Article  Google Scholar 

  14. M S Kadhim et al ACS Appl. Electron. Mater. 1 318 (2020)

    Article  Google Scholar 

  15. A Moulhim, B Tripathi, A Kalam and M Kumar Superlattices Microstruct. 151 106819 (2021)

    Article  Google Scholar 

  16. G Zhou et al Adv. Electron. Mater. 8 2101127 (2022)

    Article  Google Scholar 

  17. P W Anderson Phys. Rev. 124 41 (1961)

    Article  MathSciNet  ADS  Google Scholar 

  18. M K Shamer J. Basrah Res. (Sciences) 46 128 (2020)

    Google Scholar 

  19. K K Likharev Proc. IEEE 87 606 (1999)

    Article  Google Scholar 

  20. M L Perrin Soc. Rev. 44 902 (2015)

    Article  Google Scholar 

  21. L E Brus Appl. Phys. A 53 465 (1991)

    Article  ADS  Google Scholar 

  22. C Delerue and M Lannoo Nanostructures: Theory and Modelling (Berlin: Springer) (2004)

    Book  Google Scholar 

  23. K Yamada Electron Correlation in Metals (New York: Cambridge University Press) (2004)

    Book  Google Scholar 

  24. K Yosida Theory of Magnetism Solid State Science (Berlin: Springer) (1998)

    Google Scholar 

  25. M K Shamer and H K Fadel J. Synch. Investig. 14 1371 (2020)

    Article  Google Scholar 

  26. N S Wingreen and Y Meir Phys. Rev. B 49 11040 (1994)

    Article  ADS  Google Scholar 

  27. M K Shamer Indian J. Phys. 96 2011 (2022)

    Article  ADS  Google Scholar 

  28. F Jain et al J. Electron. Mater. 41 2775 (2012)

    Article  ADS  Google Scholar 

  29. M Jung and K Hirakawa International Conference on Solid State Devices and Materials 320 (2003)

  30. S Lee, Y Lee, E B Song and T Hiramoto Nano Lett. 14 71 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. K. Shamer or J. M. Al-Mukh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamer, M.K., Al-Mukh, J.M. IV characteristics of the single quantum dot within impurity Anderson model: the role of correlation regime. Indian J Phys 98, 543–548 (2024). https://doi.org/10.1007/s12648-023-02822-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02822-9

Keywords

Navigation