Skip to main content
Log in

Influence of initial phase on electron motion and spatial emission characteristics from electron driven by tightly focused linearly polarized laser pulse

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Based on the knowledge of electrodynamics and the nonlinear Thomson scattering framework, a single-electron motion and radiation model is established and numerical simulation is carried out to study the effect of the initial phase on the electron motion and radiation characteristics under a tightly focused linearly polarized laser pulse. It is demonstrated that when the initial phase of the tightly focused laser pulse varies within 0–π and 2ππ, respectively, the electron motion spectrum and radiation power distribution break the symmetric distribution mode. On this basis, the motion state and radiation distribution of single electron change with the initial phase are described in detail. Further analysis shows that the extreme point where the peak value and peak power angle of the upper and lower parts of the stimulated electron radiated power distribution vary with the initial phase both appears at \(\Delta \phi = {15}0^\circ\) when the initial phase changes from 0 to π, and appears around \(\Delta \phi = {3}0^\circ\) when it changes from 2π to π. The change curves of both show a special antisymmetry phase phenomenon under tight focus. This discovery offers a theoretical and numerical foundation for the investigation of high-energy electron radiation from multiple perspectives and aids in the precise measurement of ultra-intense laser characteristics in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. I Pastor, F R Álvarez-Estrada and L Roso J. Phys. Commun. 4 065010 (2020)

    Article  Google Scholar 

  2. Z Jun et al Acta Phys. Sin. 54 1018 (2005)

    Article  Google Scholar 

  3. B Chen, Z Zhang and P Jixiong JOSA A 26 862 (2009)

    Article  ADS  Google Scholar 

  4. B Shen, W Yu, G Zeng and Z Xu Opt. Commun. 136 239 (1997)

    Article  ADS  Google Scholar 

  5. F P Lan Plasmas 13 0131061 (2006)

    Article  Google Scholar 

  6. Y I Salamin FHM Faisal Phys. Rev. A. 5 44383 (1996)

    Google Scholar 

  7. H Hora Z. Phys. 226 156 (1969)

    Article  ADS  Google Scholar 

  8. S Corde, K T Phuoc, G Lambert, R Fitour, V Malka, A Rousse, A Beck and E Lefebvre Rev. Mod. Phys. 85 1–48 (2013)

    Article  ADS  Google Scholar 

  9. Z Sheng and J Zhang Phys. Plasmas 12 123103 (2005)

    Article  ADS  Google Scholar 

  10. M Tanimoto, S Kato, E Miura et al Phys. Rev. E 68 026401 (2003)

    Article  ADS  Google Scholar 

  11. T Popmintchev, C M Chen, D Popmintchev, P Arpin, S Brown, S Ališauskas and C H Kapteyn Science 336 1287 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  12. M Boca and V Florescu Phys. Rev. A 80 053403 (2009)

    Article  ADS  Google Scholar 

  13. D Seipt and B Kämpfer Phys. Rev. A 83 022101 (2011)

    Article  ADS  Google Scholar 

  14. F He, W Yu, P Lu, H Xu, L Qian, B Shen and X Yuan Phys. Rev. E 68 046407 (2003)

    Article  ADS  Google Scholar 

  15. W Huai Acta Phys. Sin. 52 2185 (2003)

    Article  Google Scholar 

  16. Z Chen, J Pu and D Zhao Phys. Lett. A 375 2958 (2011)

    Article  ADS  Google Scholar 

  17. K P Singh, D N Gupta and H K Malik Phys. Scr. 77 045401 (2008)

    Article  ADS  Google Scholar 

  18. K P Singh, D N Gupta and V Sajal Laser Part. Beams 27 635 (2009)

    Article  ADS  Google Scholar 

  19. S Kumar, D N Gupta, H K Malik and D Singh Plasmas 27 043105 (2020)

    Article  ADS  Google Scholar 

  20. D N Gupta, H Suk and M S Hur Appl. Phys. Lett. 91 211101 (2007)

    Article  ADS  Google Scholar 

  21. K Li, L Li, Q Shu, Y Tian, Y Shi and Z Zhang Optik 183 813 (2019)

    Article  ADS  Google Scholar 

  22. P Yu, H Lin, Z Gu, K Li and Y Tian Laser Phys. 30 045301 (2020)

    Article  ADS  Google Scholar 

  23. Y I Salamin and C H Keitel Phys. Rev. Lett. 88 095005 (2002)

    Article  ADS  Google Scholar 

  24. Y I Salamin and G R Mocken Rev. ST Accel. Beams 5 101301 (2002)

    Article  ADS  Google Scholar 

  25. Y I Salamin J. Phys. B At. Mol. Opt. Phys. 39 1353 (2006)

    Article  ADS  Google Scholar 

  26. Y I Salamin, G R Mocken and C H Keitel Phys. Rev. E 67 016501 (2003)

    Article  ADS  Google Scholar 

  27. Y I Salamin J. Phys. B At. Mol. Opt. Phys. 38 4095 (2005)

    Article  ADS  Google Scholar 

  28. Y Liu and Q Gong J. Phys. B At. Mol. Opt. Phys. 43 205601 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Natural Sciences Foundation of China under Grant No. 10947170/A05 and No. 11104291, Natural science fund for colleges and universities in Jiangsu Province under Grant No. 10KJB140006, Natural Sciences Foundation of Shanghai under Grant No. 11ZR1441300 and Foundation of NJUPT under Grant No. NY212080 and sponsored by Jiangsu Qing Lan Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Tian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, J., Yu, P. & Tian, Y. Influence of initial phase on electron motion and spatial emission characteristics from electron driven by tightly focused linearly polarized laser pulse. Indian J Phys 97, 4039–4047 (2023). https://doi.org/10.1007/s12648-023-02742-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02742-8

Keywords

Navigation