Skip to main content
Log in

First-principles investigations of physical properties of CdXP2 (X = Si, Ge, and Sn) ternary chalcopyrite

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In the present work, we present a theoretical study of the physical properties of ternary CdXP2 (X: Si, Ge, and Sn) chalcopyrite materials through the full-potential linearized augmented plane wave method. The generalized gradient approximations of Perdew, Burke, and Ernzerhof have been used to handle the exchange–correlation potential. Moreover, the electronic structure calculations are further improved through the modified Becke Johnson potential. Our calculations for the structural parameters of the studied compounds are found well-matching with the literature. Investigations of the electronic properties of the considered compounds have been executed through the calculation of the band structure. We observe that our compounds are semiconductors characterized by a direct energy gap between the Γ-Γ symmetry points. The optical constants, including the dielectric functions, were calculated for energy up to 30 eV. Using the GIBBS program, which is based on the quasi-harmonic model of Debye, we have investigated the thermodynamic behavior of the considered chalcopyrite under pressure and temperature effects. The variation of the volume, bulk modulus, and temperature-dependent Debye temperature and heat capacities for different pressures are estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. I H Choi and P Y Yu Phys. Rev. B 55 9642 (1996)

    ADS  Google Scholar 

  2. K Yoodee, J C Woolley and V Sa Phys. Rev. B 30 5904 (1984)

    ADS  Google Scholar 

  3. J L Shay, E Buehler and J H Wernick Phys. Rev. B 2 4104 (1970)

    ADS  Google Scholar 

  4. J L Shay, E Buehler and J H Wernick Phys. Rev. B 3 2004 (1971)

    ADS  Google Scholar 

  5. J L Shay and J H Wernick Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties and Applications (Oxford: Pergamon Press) (1974)

    Google Scholar 

  6. A S Verma Philos. Mag. 89 183 (2009)

    ADS  Google Scholar 

  7. P Schunemann Laser Focus World 35 85 (1999)

    Google Scholar 

  8. P.G. Schunemann, K. T. Zawilski, T. M. Pollak, V. Petrov, and D. E. Zelmon, CdSiP2: a new nonlinear optical crystal for 1 and 1.5 –micron -pumped, mid-IR generation Proceedings of the Advanced Solid-State Photonics, 1–4 February, Denver, CO, USA, (2009)

  9. K T Zawilski, P G Schunemann, T C Pollak, D E Zelmon, N C Fernelius and F K Hopkins J. Cryst. Growth 312 1127 (2010)

    ADS  Google Scholar 

  10. Landolt-Börnstein, Condensed Matter, Ternary Compounds, Organic Semiconductors, New Series, Group III, (eds.) O. Madelung, U.Rössler, and M. Schulz,Vol. 41E (Springer-Verlag, Berlin, (2000)

  11. A S Borshchevskii, N A Goryunova, F P Kesamanly and D N Nasledov Phys. Status Solidi 21 9 (1967)

    Google Scholar 

  12. N Itoh, T Fujinaga and T Nakau Jap. J. Appl. Phys. 17 951 (1978)

    ADS  Google Scholar 

  13. L Fan, S F Zhu, B J Zhao, B J Chen, Z Y He, H Yang and G Y Liu J. Cryst. Growth 338 228 (2012)

    ADS  Google Scholar 

  14. O Chalus, P G Schunemann, K T Zawilski, J Biegert and M Ebrahim-Zadeh Opt. Lett. 35 4142 (2010)

    ADS  Google Scholar 

  15. R Gautam, P Singh, S Sharma, S Kumari and A S Verma Mater. Sci. Semicond. Process 40 727 (2015)

    Google Scholar 

  16. Z He, B Zhao, S Zhu, B Chen, H Hou, Y Yu and L Xie Comput. Mater. Sci. 72 26 (2013)

    Google Scholar 

  17. H J Hou, H J Zhu, J Xu, S R Zhang and L H Xie Braz. J. Phys. 46 628 (2016)

    ADS  Google Scholar 

  18. R Gautam, P Singh, S Sharma, S Kumari and A S Verma Superlattices Microstruct. 85 859 (2015)

    ADS  Google Scholar 

  19. Y. Zhong, H. Mei, D. He, Xue Du, N. Cheng, J. Phys. Chem. Solids 134 157 (2019)

  20. F Chiker, B Abbar, A Tadjer, S Bresson, B Khelifa and C Mathieu Physica B 349 181 (2004)

    ADS  Google Scholar 

  21. D.J. Singh, Plane Waves, Pseudopotential and the LAPW Method, Kluwer Academic Publishers, Boston, Dortrecht, London, (1994)

  22. P Blaha, K Schwarz, P Sorantin and S B Trickey Comput. Phys. Commun. 59 399 (1990)

    ADS  Google Scholar 

  23. P Hohenberg and W Kohn Phys. Rev. B 136 864 (1964)

    ADS  Google Scholar 

  24. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2K, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Vienna University of Technology, Vienna, Austria,(2008)

  25. J P Perdew, K Burke and M Ernzerhof Phys. Rev. Lett. 77 3865 (1996)

    ADS  Google Scholar 

  26. F Tran and P Blaha Phys. Rev. Lett. 102 226401 (2009)

    ADS  Google Scholar 

  27. A D Becke and E R Johnson J. Chem. Phys. 124 221101 (2006)

    ADS  Google Scholar 

  28. M A Blanco, E Francisco and V Luaña Comput. Phys. Commun. 158 57 (2004)

    ADS  Google Scholar 

  29. F D Murnaghan Proc. Natl. Acad. Sci. U.S.A. 30 244 (1947)

    ADS  Google Scholar 

  30. V L Shaposhnikov, A V Krivosheeva and V E Borisenko Phys. Rev. B 85 205201 (2012)

    ADS  Google Scholar 

  31. F Chiker, B Abbar, A Tadjer, H Aourag and B Khelifa Mater. Sci. Eng. B 98 81 (2003)

    Google Scholar 

  32. A Continenza, S Massidda, A J Freeman, T M de Pascale, F Meloni and M Serra Phys. Rev. B 46 10070 (1992)

    ADS  Google Scholar 

  33. A S Verma and S R Bhardwaj Phys. Scr. 79 15302 (2009)

    ADS  Google Scholar 

  34. C Kittel Physique de l’état solide Cours et problèmes,7ème édition (Paris: Dunod) (1998)

    Google Scholar 

  35. S Bagci and B G Yalcin J. Phys. D: Appl. Phys. 48 475304 (2015)

    ADS  Google Scholar 

  36. Sanjay D. Gupta, Sanjeev K. Gupta, Prafulla K. Jha and N. N. Ovsyuk, J. Raman Spectrosc. 44 926 (2013)

  37. Prafulla K Jha and Sankar P Sanyal Phys. C 271 6 (1996)

    ADS  Google Scholar 

  38. Mina Talati and Prafulla K Jha Phys. Rev. B 74 134406 (2006)

    ADS  Google Scholar 

  39. A S Verma Phys. Status Solidi B 246 192 (2009)

    ADS  Google Scholar 

  40. Y Kulvitit, S Rolland, R Granger and C M Pelletier Revue de Physique Appliquée 15 1501 (1980)

    Google Scholar 

  41. J E Jaffe and A Zunger Phys. Rev. B 29 1882 (1984)

    ADS  Google Scholar 

  42. J L Shay and H M Kasper Phys. Rev. Lett. 29 1162 (1972)

    ADS  Google Scholar 

  43. R de L. Kronig, J. Opt. Soc. Am. Rev. Sci. Instrum. 12 547 (1926)

  44. M. Fox, Optical Properties of Solids p.6 (New York: Oxford University Press, 2001)

  45. S Hufner et al. Phys. Rev. B 50 2128 (1994)

    Google Scholar 

  46. H Z Tributsch Naturforschung A. 32A 972 (1977)

    ADS  Google Scholar 

  47. A S Verma and D Sharma Phys. Scr. 76 22 (2007)

    ADS  Google Scholar 

  48. R R Reddy et al. Opt. Mater. 31 209 (2008)

    ADS  Google Scholar 

  49. P K Jha Phys. Rev. B 72 214502 (2005)

    ADS  Google Scholar 

  50. Z-J. Liu, X-W Sun, C-R. Zhang, J-B Hu, T. Song, J-H. Qi, Chin. J. Chem. Phys. 24 703 (2011)

  51. P Debye Ann. Phys. 344 789 (1912)

    Google Scholar 

  52. A T Petit and P L Dulong Ann. Chim. Phys. 10 395 (1819)

    Google Scholar 

Download references

Acknowledgements

The author Bin-Omran acknowledges Researchers Supporting Project number (RSP-2023R82), King Saud University, Riyadh, Saudi Arabia. The work of the author (Bakhtiar Ul Haq) from the Jeju National University was supported by the Brain Pool program (No. 2022H1D3A2A02063677) and Basic Science Research Program (No. 2020R1I1A3A04038112) through the National Research Foundation of Korea (NRF).

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Data collection and analysis were performed by [NT], [SB], [MG], [SG], and [ZC]. The first draft of the manuscript was written by [HM] [BUH], and all authors commented on previous versions of the manuscript. RK and BO Supervising, Reviewing and Editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to H. Meradji.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval and consent to participate

None.

Consent for publication

All authors approve the ethics.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taguida, N., Benlamari, S., Meradji, H. et al. First-principles investigations of physical properties of CdXP2 (X = Si, Ge, and Sn) ternary chalcopyrite. Indian J Phys 97, 3887–3900 (2023). https://doi.org/10.1007/s12648-023-02725-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02725-9

Keywords

Navigation