Skip to main content
Log in

Thermal properties of graphene oxide nanofluids

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The thermal characteristics of produced graphene oxide (GO)–distilled water (DW) nanofluids are investigated experimentally. Graphene oxide nanofluids were made by dispersing graphene oxide nanoparticles in distilled water, stirring with a magnetic stirrer and sonicating with an ultrasonic instrument, which is known as the two-step nanofluids synthesis technique. Graphene oxide nanofluids of 0.0125, 0.025 and 0.0375 wt% concentrations were prepared, and thermal properties of these nanofluids were tested using TPS 2200 thermal constant analyser at temperatures changing from 10 to 60 °C in steps of 10. This study tells that maximum percentage increment of 14% and 31% at 60 °C was observed in thermal conductivity (TC) and thermal diffusivity (TD) of graphene oxide nanofluids correspondingly although specific heat (SH) of GO nanofluid was declined with highest 33% at 60 °C with concentration varying from 0.0125 to 0.0375 wt%. Our results show that an increase in nanoparticle loading at a fixed temperature improves TC and TD while lowering SH. According to the observations, at a given concentration, increase in temperature results in higher values for thermal conductivity and thermal diffusivity but lower values for specific heat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T Gholizadeh, M Vajdi and F Mohammadkhani Energy Convers. Manag. 181 463 (2019)

    Article  Google Scholar 

  2. T Gholizadeh Desalination 477 114259 (2020)

    Article  Google Scholar 

  3. T Gholizadeh, M Vajdi and H Rostamzadeh Energy Convers. Manag. 196 1193 (2019)

    Article  Google Scholar 

  4. F S Moghanlou, A S Khorrami, E Esmaeilzadeh and H Aminfar Exp. Therm. Fluid Sci. 59 24 (2014)

    Article  Google Scholar 

  5. R L Webb and N Y Kim Enhanced Heat Transfer (New York: Taylor and Francis) (2005)

    Google Scholar 

  6. M U Sajid and H M Ali Renew. Sustain. Energy Rev. 103 556 (2019)

    Article  Google Scholar 

  7. R Saidur, K Y Leong and H A Mohammed Renew. Sustain. Energy Rev. 15 1646 (2011)

    Article  Google Scholar 

  8. S U S Choi and J A Eastman Enhancing Thermal Conductivity of Fluids with Nanoparticles (Argonne, IL (United States): Argonne National Lab (ANL)) (1995)

    Google Scholar 

  9. J A Eastman, U S Choi, S Li, L J Thompson and S Lee MRS Online Proc. Library (OPL) 457 3 (1996)

    Article  Google Scholar 

  10. Y Hwang, J K Lee, J K Lee, Y M Jeong, S I Cheong, Y C Ahn and S H Kim Powder Technol. 186 145 (2008)

    Article  Google Scholar 

  11. D K Devendiran and V A Amirtham Renew. Sustain. Energy Rev. 60 21 (2016)

    Article  Google Scholar 

  12. W T Urmi, M M Rahman, K Kadirgama, D Ramasamy and M A Maleque Mater. Today Proc. 41 30 (2021)

    Article  Google Scholar 

  13. A S Dalkılıç et al. Int. Commun. Heat Mass Transf. 99 18 (2018)

    Article  Google Scholar 

  14. M A Khairul, K Shah, E Doroodchi, R Azizian and B Moghtaderi Int. J. Heat Mass Transf. 98 778 (2016)

    Article  Google Scholar 

  15. M C S Reddy, V V Rao, S N Sarada and B C M Reddy Int. J. Micro-Nano Scale Transp. 3 43 (2012)

    Article  Google Scholar 

  16. M R Nisha and J Philip J. Heat Mass Transf. 48 1783 (2012)

    Article  ADS  Google Scholar 

  17. A Alirezaie, M H Hajmohammad, M R H Ahangar and M H Esfe Appl. Therm. Eng. 128 373 (2018)

    Article  Google Scholar 

  18. P Maheshwary, C C Handa, K R Nemade and N N Gyanchandani Advances in Mechanical Engineering p 735 (2021)

  19. R Agarwal, N K Agrawal, A Bansal, A Upadhyay and R Singh Mater. Res. Express 7 015048 (2020)

    Article  ADS  Google Scholar 

  20. K V Wong and O De Leon Adv. Mech. Eng. 2 519659 (2010)

    Article  Google Scholar 

  21. E J Felton and D H Reich Biomedical Applications of Nanotechnology, (Hoboken: Wiley) p 1 (2007)

    Book  Google Scholar 

  22. A J Ali, B E Eddin and M T Chaichan Therm. Sci. Eng. Prog. 25 100985 (2021)

    Article  Google Scholar 

  23. S U S Choi, Z G Zhang, W Yu, F E Lockwood and E A Gurkle Appl. Phys. Lett. 79 2252 (2001)

    Article  ADS  Google Scholar 

  24. Y Ding, H Alias, D Wen and R A Williams Int. J. Heat Mass Transf. 49 240 (2006)

    Article  Google Scholar 

  25. H Xie, H Lee, W Youn and M Choi J. Appl. Phys. 94 4967 (2003)

    Article  ADS  Google Scholar 

  26. L Chen, H Xie, Y Li and W Yu Thermochim. Acta 477 21 (2008)

    Article  Google Scholar 

  27. K M Yashawantha and A V Vinod J. Therm. Eng. 7 1743 (2021)

    Article  Google Scholar 

  28. V N Deshmukh, S Radhakrishnan and R R Kulkarni AIP Conf. Proc. 1 2358 (2021)

    Google Scholar 

  29. A V Minakov et al. J. Mol. Liq. 367 120385 (2022)

    Article  Google Scholar 

  30. Y Yang, Z G Zhang, E A Grulke, W B Anderson and G Wu Int. J. Heat Mass transf. 48 1107 (2005)

    Article  Google Scholar 

  31. S Lee, S U S Choi, S Li and J A Eastman J. Heat Transf. 121 280 (1999)

    Article  Google Scholar 

  32. X Wang, X Xu and S U S Choi J. Thermophys. Heat Transf. 13 474 (1999)

    Article  Google Scholar 

  33. A Karimipour, S Ghasemi, M H K Darvanjooghi and A Abdollahi Int. Commun. Heat Mass Transf. 92 90 (2018)

    Article  Google Scholar 

  34. L Qiu et al. Phys. Rep. 843 1 (2020)

    Article  ADS  Google Scholar 

  35. L Yu-Hua, Q Wei and F Jian-Chao Chin. Phys. Lett. 25 3319 (2008)

    Article  ADS  Google Scholar 

  36. F M Ali, W M M Yunus and Z A Mand Talib Int. J. Phys. Sci. 8 1442 (2013)

    Google Scholar 

  37. S Q Zhou and R Ni Appl. Phys. Lett. 92 093123 (2008)

    Article  ADS  Google Scholar 

  38. S S Murshed Heat Transf. Eng. 33 722 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to R.U.S.A. and D.S.T. Purse grants for providing the instrumental and material facilities. Center for Non-Conventional Energy Resources, University of Rajasthan in Jaipur, is also worth mentioning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arti Bansal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, A., Sharma, G.P. & Singh, R. Thermal properties of graphene oxide nanofluids. Indian J Phys 97, 3003–3010 (2023). https://doi.org/10.1007/s12648-023-02671-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02671-6

Keywords

Navigation