Skip to main content
Log in

On blood-based binary Casson nanofluid convection using viscosity and conductivity variations embedded with Darcy porous medium

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The onset of double-diffusive convection with conductivity and viscosity variations has been investigated for blood-based Casson nanofluids and Darcy model is used to modify the momentum equation. The conductivity and viscosity of nanofluid are assumed to be linear functions of their volume fraction and the problem incorporates Brownian motion and thermophoresis. The resulting eigenvalue problem is solved using single term Galerkin method that gives the criterion for both stationary and oscillatory motions. It is observed that nanoparticle parameters and solute parameters except solute Rayleigh number destabilize the system while porosity parameter and solute Rayleigh number postpone the onset of convection. Darcy-Rayleigh number for glycol, honey and blood-based nanofluids is much higher than that of water-based nanofluids. Hence the system is more stable for non-Newtonian fluids. The goal and novelty of the present work lies in the fact that it examines, different base-fluids (water, blood, honey and glycol) with different porous phases (glass, limestone and sand) for their conductivity patterns to observe that conductivity variation pattern for different porous media is: glass < limestone < sand and for different base-fluids is: water < honey < blood < glycol. Further, important result is the fact that although non-Newtonian Casson parameter destabilizes the fluid layer system yet Casson nanofluids are more stable when compared to regular nanofluids. Reason behind is that the Casson parameter though with the positive sign, but lies in the denominator in the expression of Darcy-Rayleigh number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7

Similar content being viewed by others

Abbreviations

\(a\) :

Wave number

\(c\) :

Nanofluid specific heat (J/kg K)

\(C\) :

Solute concentration (mol/kg)

\(C_{0}\) :

Solute concentration at lower layer (mol/kg)

\(C_{1}\) :

Solute concentration at upper layer (mol/kg)

\(d\) :

Depth of the layer (m)

\(D_{{\text{b}}}\) :

Brownian diffusion coefficient (m2/s)

\(D_{{{\text{ct}}}}\) :

Diffusivity of Soret type (m2/s)

\(D_{{\text{s}}}\) :

Solutal diffusivity (m2/s)

\(D_{{\text{t}}}\) :

Thermophoresis diffusion coefficient (m2/s)

\(D_{{{\text{tc}}}}\) :

Diffusivity of Dufour type (m2/s)

\(e_{ij}\) :

Deformation rate (\({\text{Pas}}\))

\({\mathbf{g}}\) :

Acceleration due to gravity (m/s2)

\(k\) :

Thermal conductivity of nanofluid (W/mK)

\(k_{{{\text{eff}}}}\) :

Effective conductivity of fluid (W/mK)

\(k_{{\text{f}}}\) :

Conductivity of the fluid (W/mK)

\(k_{m}\) :

Overall thermal conductivity (W/mK)

\(k_{{\text{p}}}\) :

Conductivity of the particles (W/mK)

\(k_{{\text{s}}}\) :

Conductivity of solid material (W/mK)

\(K\) :

Permeability (\({\text{m}}^{2}\))

\(m_{x}\) :

Wave number in x-pivot

\(n_{y}\) :

Wave number in y-pivot

\(p\) :

Pressure (Pa)

\(s\) :

Growth rate (\({\text{m}}\))

\(t\) :

Time (\({\text{s}}\))

\(T\) :

Temperature (\({\text{K}}\))

\(T_{0}\) :

Temperature at lower layer (\({\text{K}}\))

\(T_{1}\) :

Temperature at upper layer (\({\text{K}}\))

\({\mathbf{V}}\) :

Velocity of the fluids (\({\text{m}}/{\text{s}}\))

\({\mathbf{V}}_{{\text{d}}}\) :

Darcian-velocity of fluid (\(= \varepsilon {\mathbf{V}}\)) (\({\text{m}}/{\text{s}}\))

\(Y_{y}\) :

Yield stress for Casson fluid (\({\text{N}}/{\text{m}}^{2}\))

\(\alpha_{m}\) :

Thermal diffusivity of fluid (\({\text{m}}^{2} /{\text{s}}\))

\(\beta\) :

Casson parameter

\(\beta_{{\text{t}}}\) :

Thermal volumetric coefficient (\({\text{K}}^{ - 1}\))

\(\beta_{{\text{c}}}\) :

Solute volumetric coefficient (\({\text{K}}^{ - 1}\))

\(\gamma\) :

Conductivity variation parameter

\(\varepsilon\) :

Porosity

\(\mu\) :

Viscosity of the nanofluid (\({\text{N}}\,{\text{s}}/{\text{m}}^{2}\))

\(\mu_{{{\text{eff}}}}\) :

Effective viscosity (\({\text{N}}\,{\text{s}}/{\text{m}}^{2}\))

\(\mu_{f}\) :

Dynamic viscosity (\({\text{Pa}}\;{\text{s}}\))

\(\phi\) :

Nanoparticle volume fraction

\(\tilde{\pi }\) :

Product of component of deformation rate (\({\text{Pa}}\;{\text{s}}\))

\(\tilde{\pi }_{{\text{c}}}\) :

Critical value of \(\tilde{\pi }\), defined by Eq. (1)

\(\nu\) :

Viscosity variation parameter

\(\tau\) :

Stress tensor (\({\text{N}}/{\text{m}}^{2}\))

\(\rho_{p}\) :

Nanoparticle density (\({\text{kg}}/{\text{m}}^{3}\))

\(\rho_{0}\) :

Fluid density at temperature \(T_{0}\)  (\({{\text{kg}}/{\text{m}}^{3} }\))

\(\rho c\) :

Heat capacity (\({\text{J}}/{\text{K}}\))

\(\sigma\) :

Thermal capacity ratio (\({\text{J}}/{\text{K}}\))

\(\phi\) :

Relative nanoparticle volume fraction \(\frac{{\phi - \phi_{0} }}{{\phi_{1} - \phi_{0} }}\)

\(L_{e}\) :

Solute Lewis number

\(L_{{\text{n}}}\) :

Nanofluid Lewis number

\(N_{a}\) :

Diffusivity ratio

\(N_{b}\) :

Particle density increment

\(N_{{{\text{ct}}}}\) :

Soret parameter

\(N_{{{\text{tc}}}}\) :

Dufour parameter

\(R_{a}\) :

Thermal Rayleigh number

\(R_{m}\) :

Basic-density Rayleigh number

\(R_{{\text{n}}}\) :

Nanoparticle Rayleigh number

\(R_{{\text{s}}}\) :

Solute Rayleigh number

^:

Perturbed variable

\(*\) :

Non-dimensional variable

~ :

Basic solutions

References

  1. S Choi Developments and Applications of Non-Newtonian Flows (New York), ASME FED 231/MD-66 p 99 (1995)

  2. H Masuda, A Ebata, K Teramae and N Hishinuma Netsu Bussei 7 227 (1993)

    Article  Google Scholar 

  3. D Y Tzou J. Heat Transfer 130 1 (2008)

    Article  Google Scholar 

  4. D Y Tzou Int. J. Heat Mass Transfer 51 967 (2008)

    Article  Google Scholar 

  5. J Buongiorno ASME J. Heat Transfer 128 240 (2006)

    Article  Google Scholar 

  6. D A Nield and A V Kuznetsov Euro. J. Mech. 29 217 (2010)

    Article  Google Scholar 

  7. D A Nield and A V Kuznetsov Int. J. Therm. Sciences 49 243 (2010)

    Article  Google Scholar 

  8. U Gupta, J Ahuja and R K Wanchoo Int. J. Heat Mass Trans. 64 1163 (2013)

    Article  Google Scholar 

  9. F Garoosi, L Jahanshaloo, M M Rashidi, A Badakhsh and M A Ali Appl. Math. Comp. 254 183 (2015)

    Article  Google Scholar 

  10. J Ahuja, U Gupta and V Sharma Int. J. Technology 6 233 (2016)

    Article  Google Scholar 

  11. V Sharma and R Kumari J. Rajasthan Academy Phy. Sciences 14 295 (2015)

    Google Scholar 

  12. G C Rana, R Chand and V Sharma Engineering Transactions 64 271 (2016)

    Google Scholar 

  13. V Sharma, A Chowdhary and U Gupta J. Applied Fluid Mechanics 11 765 (2018)

    Article  Google Scholar 

  14. V Sharma, G C Rana and R Chand Technische Mechanik 38 246 (2018)

    Google Scholar 

  15. D A Nield and A V Kuznetsov Media 9 837 (2012)

    Google Scholar 

  16. D Yadav, G S Agrawal and R Bhargava J. Porous Media 16 105 (2013)

    Article  Google Scholar 

  17. D Yadav, D Lee and H H Cho J Lee J. Porous Media 19 31 (2016)

    Article  Google Scholar 

  18. J C Umavathi, M S Sheremet, O Ojela and G J Reddy Eur. J. Mech. B/Fluids 65 70 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  19. Kavita, V Sharma, A Chaudhary Journal of Education 23 41 (2021)

  20. S Nandi, B Kumbhakar, G S Seth and A J Chamkha Physica Scripta 96 17 (2021)

    Article  Google Scholar 

  21. J Devi, V Sharma, A Thakur and G C Rana Heat Transfer 1 1 (2022)

    Google Scholar 

  22. J Venkatesan and D S Sankar J. App. Math. 2013 583809 (2015)

    Google Scholar 

  23. N Casson Pergamon Press Oxford 84 (1959)

  24. G W Scott Blair and Spanner Nature 183 613 (1959)

  25. M S Aghighi, A Ammar, C Metivier and M Gharagozlu Int. J. Therm. Sciences 127 79 (2018)

    Article  Google Scholar 

  26. R K Tiwari and M K Das Int. J. Heat Mass Transfer 50 2002 (2007)

    Article  Google Scholar 

  27. G S Seth, R Tripathi and M K Mishra Applied Mathematics and Mechanics 38 1613 (2017)

    Article  Google Scholar 

  28. M Zivok, N Popov, S Vidakovic, D L Pelic, M Pelic, Z Mihaljev and S Jaksik Medicine 11 91 (2018)

    Google Scholar 

  29. G S Seth, R Kumar, R Tripathi and A Bhattacharyya Int. J. Heat and Technology 36 1517 (2018)

    Article  Google Scholar 

  30. G S Seth, A Bhattacharyya, R Kumar and M K Mishra J. Porous Media 22 1141 (2019)

    Article  Google Scholar 

  31. J A Gbadeyan, E O Titiloye and A T Adeosun Heliyon 6 e03076 (2020)

    Article  Google Scholar 

  32. U Gupta, J Sharma and M Devi Mater. Today: Proceedings 28 1748 (2020)

  33. U Gupta, J Sharma and M Devi Eur. Phys. J. Spec. Topics 230 1435 (2021)

    Article  ADS  Google Scholar 

  34. M Senapati, K Swain and S K Parida F. Heat Mass Trans. 6 1 (2020)

  35. M Devi, J Sharma and U Gupta J. Por. Media 25 1 (2022)

    Article  Google Scholar 

  36. S Mahmoodi, A Elmi and S H Nezhadi J. Mol. Pharm. Org. Process Res. 6 1000140 (2018)

    Article  Google Scholar 

  37. S Said, S Mikhail and M Raid Mat. Sci. Energy Technology 3 344 (2020)

    Google Scholar 

  38. S Nandi, M Das and B Kumbhakar J. Nanofluids 11 17 (2022)

    Article  Google Scholar 

  39. S Chandrasekhar Hydrodynamic and Hydromagnetic Stability (New York: USA), Dover Publications) (1981)

    MATH  Google Scholar 

Download references

Acknowledgements

One of the authors, Mamta Devi is thankful to Council of Scientific and Industrial Research, New Delhi-110012, India, for the financial assistance in the form of SRF [Ref. No.: 09/135 (0895)/2019-EMR-I].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urvashi Gupta.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, M., Gupta, U. On blood-based binary Casson nanofluid convection using viscosity and conductivity variations embedded with Darcy porous medium. Indian J Phys 97, 1833–1847 (2023). https://doi.org/10.1007/s12648-022-02584-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02584-w

Keywords

Navigation