Skip to main content
Log in

Synthesis, crystal structure, vibrational properties, optical properties and Hirshfeld surface analysis of a new Bi (III) halide complex: (C2H8N)3BiBr6 for optoelectronic devices

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

A new organic–inorganic material, dimethylaminium hexabromobismuthate (C2H8N)3BiBr6 was elaborated by the slow evaporation technique at room temperature. This compound is synthesized and characterized by X-ray diffraction, Raman spectroscopy scattering, Hirshfeld surface analysis, 13C NMR spectroscopy, photoluminescence and by UV–Vis spectroscopy. The crystal lattice is formed by discrete [BiBr6]3− anions surrounded by dimethylaminium cations. Besides, the title compound crystallizes in the space group R \(\overline{3 }\) of trigonal system. The unit cell parameters are a = 29.3387(9) Å, b = 29.3387(9) Å and c = 8.4642(3) Å. The Raman and infrared spectra recorded at room temperature were interpreted by analogy with homologous materials. The cohesion of the structure is ensured by a huge network of N–H…Br hydrogen bonds and van der Waals interaction (C–H….Cl). The UV–Vis measurements, performed from 200 to 2400 nm, show a direct and wide optical bandgap evaluated at (2.840 ± 0.005), (2.482 ± 0.004) and (2.805 ± 0.006) eV by different methods. The Urbach energy presents a low value estimated at (182 ± 3) meV confirming the high quality of our compound. In addition, the evolution of the extinction coefficient (ke) and the refractive index n with the wavelength λ were determined. Furthermore, we have demonstrated that n obeys to Cauchy relation. Other optical parameters such as the skin depth and the optical conductivity were calculated, and all obtained results were discussed. We have demonstrated, in addition, that the energy losses are mainly in the bulk rather than the surface of the studied material. Based on the Wemple–Di-Domenico model, the dispersion parameters E0 and Ed relative to the (C2H8N)3BiBr6 sample were calculated. These encouraging results such as the obtained high and direct optical bandgap value prompt us to propose this compound as a basic material for optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. M Samaniyan et al. J. Dalton Trans. 50 1895 (2021)

    Article  Google Scholar 

  2. S Derakhshanrad, M Mirzaei, C Streb, A Amiri and C Ritchie J. Inorg. Chem. 60 1472 (2021)

    Article  Google Scholar 

  3. M Mirzaei, H Eshtiagh-Hosseini, M Alipour, A Bauzá, J T Mague, M Korabik and A Frontera J. Dalton Trans. 44 8824 (2015).

    Article  Google Scholar 

  4. A Najaf, M Mirzaei and J T Mague J. CrystEngComm 18 6724 (2016)

    Article  Google Scholar 

  5. M Arab Fashapoyeh, M Mirzaei, H Eshtiagh-Hosseini, A Rajagopal, M Lechner, R Liu and C Streb J. Chem. Commun. 54 10427 (2018)

    Article  Google Scholar 

  6. H Elgahami, W Trigui, A Oueslati, J Lhoste and F Hlel Appl. Organnometallic Chem. 33, e5078 (2019)

    Google Scholar 

  7. A Oueslati, A Bulou, F Calvayrac, K Adil, M Gargouri and F Hlel J. Vib. Spectrosc. 64, 10 (2013)

    Article  Google Scholar 

  8. M Ben Bechir, K Karoui, M Tabellout, K Guidara and A Ben Rhaiem, J. Appl. Phys. 115, 153708 (2014)

    Article  ADS  Google Scholar 

  9. F F Jian, Y Q Qin, J Zhang and P S Zhao Bull. Korean Chem. Soc. 29 7 (2008).

    Google Scholar 

  10. D B Mitzi and P Brock J. Inorg. Chem. 40 2096 (2001).

    Article  Google Scholar 

  11. J Tarasiewicz, R Jakubas, G Bator, J Zaleski, J Baran and W Medycki J. Mot. Struct. 932 6 (2009).

    Article  ADS  Google Scholar 

  12. S Hajlaoui, I Chaabane, A Oueslati, K Guidara, A Bulou and J Spectrochim Biomol. Spectrosc. A 117 225 (2014).

    Article  Google Scholar 

  13. H Zhang, X M Wang, K C Zhang and B.K. J. Coord. Chem. Rev. 183 157 (1999).

    Article  Google Scholar 

  14. D Braga, G R Desiraju, J S Miller, A G Orpen and S L Price Cryst. Eng. Commun. 4 500 (2002).

    Article  Google Scholar 

  15. G R Desiraju Angew. Chem. Int. Ed. Engl. 34 2301 (1995)

    Article  Google Scholar 

  16. G R Desiraju J. Mol. Struct. 656 5 (2003)

    Article  ADS  Google Scholar 

  17. D B Mitzi Prog. Inorg. Chem. 48 1 (1999)

    Google Scholar 

  18. P G Lacroix, R Clement, K Nakatani, J A Delaire, J Zyss and I Ledoux Science. 263 658 (1994).

    Article  ADS  Google Scholar 

  19. A Ben Jazia Kharrat, K Kahouli and S Chaabouni J. Bull Mater Sci 43 275 (2020)

    Article  Google Scholar 

  20. K Kahouli, A Ben Jazia Kharrat and Slaheddine Chaabouni Indian J Phys 95 2797 (2021)

    Article  ADS  Google Scholar 

  21. J Tarasiewicz, R Jakubas and J Baran J. Vib. Spectrosc. 40 55 (2006)

    Article  Google Scholar 

  22. G Bator, T Zeegers-Huyskens, R Jakubas and J Zaleski J. Mol. Struct. 570 61 (2001)

    Article  ADS  Google Scholar 

  23. A Samet, H Boughzala, H Khemakhem and Y Abid J. Mol. Struct. 984 23 (2010).

    Article  ADS  Google Scholar 

  24. B Wenhua, N Leblanc, N Mercier, P Auban-Senzier and C Pasquier, Chem. Mater. 21 4099 (2009)

    Article  Google Scholar 

  25. M Essid, Z Aloui, V Ferretti, S Abid, F Lefebvre, M Rzaigui and C Ben Nasr, J. Inorganica Chimica Acta. 457 122 (2017)

    Article  Google Scholar 

  26. R Mesbeh, A Ben Ahmed, B Hamdi and R Zouari, Ionics. 22 2075(2016)

    Article  Google Scholar 

  27. R Mesbeh, B Hamdi and R Zouari J. Mol. Struct 1128 205 (2017).

    Article  ADS  Google Scholar 

  28. R Mesbeh, B Hamdi and R Zouari J. Mol. Struct 1125 217 (2016).

    Article  ADS  Google Scholar 

  29. G M Sheldrick, SHELXS-97, University of Gottingen Germany (1997)

  30. G M Sheldrick SHELXL-97 (Germany: University of Gottingen) (1997)

    Google Scholar 

  31. L J Farrugia J. Appl. Cryst. 45 849 (2012).

    Article  Google Scholar 

  32. K Brandenburg, Diamond Version2.0 Impact Gbr, Bonn, Germany (1998)

  33. M Essid and M Rzaigui J. Chem. Crystallogr. 45 310 (2015).

    Article  Google Scholar 

  34. M R Shehata, M M Shoukry, S A Shokry and M A Mabrouk J. Coord. Chem. 3135 (2015)

  35. S Soudani, E Jeanneau, C Jelsch, F Lefebvre and C Ben Nasr, J. Mol. Struct. 1123 66 (2016)

    Article  ADS  Google Scholar 

  36. S K Wolff, D J Grimwood, J J McKinnon, M J Turner, D Jayatilaka and M A Spackman Crystal Explorer Version 3.1 (Perth: University of Western Australia) 2013

  37. M A Spackman and J J McKinnon CrystEngComm. 4 378 (2002).

    Article  Google Scholar 

  38. S Grabowsky, P M Dean, B W Skelton, A N Sobolev, M A Spackman and A H White CrystEngComm. 14 1083 (2012).

    Article  Google Scholar 

  39. A Samet, A Ben Ahmed, A Mlayah, H Boughzala, E K Hill, Y Abid, J. Mol. Struct. 977 30 (2010)

    Article  Google Scholar 

  40. H Khili, N Chaari, M Fliyou, A Koumina and S Chaabouni, Poly. 36 30 (2012)

    Google Scholar 

  41. A Vogler and H Nikol Comments Inorg. Chem. 14 245 (1993).

    Article  Google Scholar 

  42. A Vogler and A Paukner Inorg. Chim. Acta. 163 207 (1989).

    Article  Google Scholar 

  43. K Meidenbauer and G Gliemann, Z Naturforsch. A 43 555 (1988)

    Article  ADS  Google Scholar 

  44. P Kubelka, Ein Beitrag zur Optik der Farbanstriche Zeitschrift fur technische Physik 12 593 (1931)

    Google Scholar 

  45. R Mguedla, A Ben Jazia Kharrat, M Saadi, K Khirouni, N Chniba-Boudjada, W Boujelben, J Alloys. Compd. 812 152130 (2020)

    Article  Google Scholar 

  46. O Ben Moussa, H Chebbi, M Faouzi Zid, J. Mol. Struct. 1180 72 (2019)

    Article  ADS  Google Scholar 

  47. S So¨nmezog˘lu, T A Termeli, S Akın and I˙ Askerog˘lu J. Sol-Gel Sci Technol 67 97 (2013)

  48. S Akın and S So¨nmezog˘lu, Mater. Techn .Adv. Perform. Mat. 27 342 (2012)

  49. S So¨nmezog˘lu, G C¸ ankaya and N Serin, Appl. Phys. A Mater. Sci. Proc. 107 233 (2012)

  50. S So¨nmezog˘lu, G C¸¸ Ankaya and N Serin Mater. Techn. Adv. Perform. Mat. 27 251 (2012)

  51. S So¨nmezog˘lu, A Arslan, T Serin and N Serin, Physica Scripta 84 065602 (2011)

  52. S So¨nmezog˘lu and Ö A Sönmezoz˘lu Mater. Sci. Eng: C 31 1619–1624 (2011)

    Article  Google Scholar 

  53. R Mguedla, A Ben Jazia Kharrat, S Kammoun, K Khirouni and W Boujelben, Opt. Mater. 119 111311 (2021)

    Article  Google Scholar 

  54. Y Shao et al Energy Environ. Sci. 9 1752 (2016).

    Article  Google Scholar 

  55. J Xing et al Phys. Chem. Chem. Phys. 18 30484 (2016).

    Article  Google Scholar 

  56. Q Wang et al Energy Environ. Sci. 10 516 (2017).

    Article  Google Scholar 

  57. Z Ni et al Science 367 1352 (2020).

    Article  ADS  Google Scholar 

  58. R Mguedla, A Ben Jazia Kharrat, O Taktak, H Souissi, S Kammoun, K Khirouni and W Boujelben, Opt. Mat. 101 109742 (2020)

    Article  Google Scholar 

  59. S H Wemple and M Didomenico Phys. Rev. B 3 1338 (1971).

    Article  ADS  Google Scholar 

  60. P Sharma, A Dahshan and K A Aly J. Alloys Compd. 616 323 (2014).

    Article  Google Scholar 

  61. S Husain, A O A Keelani and W Khan Nano-Struct. Nano Obj. 15 17 (2018)

    Article  Google Scholar 

  62. M A Majeed Khan, M Wasi Khan, M Alhoshan, M S AlSalhi, and A S Aldwayyan Appl. Phys. A 100 45 (2010)

    Article  ADS  Google Scholar 

  63. W G Spitzer and H Y Fan Phys. Rev. 106 882 (1957)

    Article  ADS  Google Scholar 

  64. B G Wybourne Spectroscopic Properties of Rare Earth, 1st edn. (New York: Wiley) (1965)

    Google Scholar 

  65. H G Tompkins and W A McGahan Spectroscopic Ellipsometry and Reflectometry (New York: John Wiley and Sons Inc.) (1999)

    Google Scholar 

  66. S R Chalana, V Ganesan and V P Mahadevan Pillai AIP Adv. 5 107207 (2015)

    Article  ADS  Google Scholar 

  67. J I Pankov Optical process in semiconductors (NewYork: Dover Publications) (1975)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the “Department of Chemistry, Faculty of Sciences of Sfax, University of Sfax, BP 1171, 3038 Sfax, Tunisia,” Spanish MINECO (MAT2016-78155-C2-1-R) and Gobiernodel Principado de Asturias (GRUPIN-ID2018-170).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ben Jazia Kharrat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahouli, K., Ben Jazia Kharrat, A., Abdelbaky, M.S.M. et al. Synthesis, crystal structure, vibrational properties, optical properties and Hirshfeld surface analysis of a new Bi (III) halide complex: (C2H8N)3BiBr6 for optoelectronic devices. Indian J Phys 97, 457–472 (2023). https://doi.org/10.1007/s12648-022-02407-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02407-y

Keywords

Navigation