Skip to main content

Advertisement

Log in

Evaluation of surface energy and its anisotropy for bcc transition metals by modified embedded atom method

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The surface energy and its anisotropy for the body-centered cubic (bcc) transition metals Cr, Fe, Mo, Nb, Ta, V, and W were evaluated by using the modified embedded-atom method proposed by Jin et al. (Appl Phys A 120: 189, 2015). The calculation results show that among all the surface energies for each bcc transition metal Es(110) and Es(111) are the lowest and highest, respectively. Our calculation indicates that the order of the three low-index surface energies is Es(110) < Es(100) < Es(111), which is consistent with the experimental result. The surface energy corresponding to the (hkl) plane surface increases almost linearly as the including angle between the surface and the (110) plane increases. The present results provide the theoretical data for significant insight into the surface energy of the bcc transition metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. J M Zhang, F Ma and K W Xu Appl. Surf. Sci. 229 34 (2004)

    Article  ADS  Google Scholar 

  2. J J Tang, X B Yang, L Z OuYang, M Zhu and Y J Zhao J. Phys. D: Appl. Phys. 47 115305 (2014)

    Article  ADS  Google Scholar 

  3. J Y Lee, M P J Punkkinen, S Schönecker et al Surf. Sci. 674 51 (2018)

    Article  ADS  Google Scholar 

  4. J Wang and S Q Wang Surf. Sci. 630 216 (2014)

    Article  ADS  Google Scholar 

  5. Y N Wen and J M Zhang Solid State Communications 144 163 (2007)

    Article  ADS  Google Scholar 

  6. P Hecquet Surf. Sci. 683 7 (2019)

    Article  ADS  Google Scholar 

  7. Y Luo and R Qin Surf. Sci. 630 195 (2014)

    Article  ADS  Google Scholar 

  8. M S Daw and M I Baskes Phys. Rev. B 29 6443 (1984)

    Article  ADS  Google Scholar 

  9. M S Daw and M I Baskes Phys. Rev. Lett. 50 1285 (1983)

    Article  ADS  Google Scholar 

  10. M I Baskes, J S Nelson and A F Wright Phys. Rev. B 40 6085 (1989)

    Article  ADS  Google Scholar 

  11. M I Baskes Phys. Rev. B 46 2727 (1992)

    Article  ADS  Google Scholar 

  12. M I Baskes Phys. Rev. Lett. 59 2666 (1987)

    Article  ADS  Google Scholar 

  13. J R Smith and A Banerjea Phys. Rev. Lett. 59 2451 (1987)

    Article  ADS  Google Scholar 

  14. J B Adams and S M Foiles Phys. Rev. B 41 3316 (1990)

    Article  ADS  Google Scholar 

  15. S M Foiles, M I Baskes and M S Daw Phys. Rev. B 33 7983 (1986)

    Article  ADS  Google Scholar 

  16. R A Johnson Phys. Rev. B 37 3924 (1988)

    Article  ADS  Google Scholar 

  17. B E Sundquist Acta Metall. 12 67 (1964)

    Article  Google Scholar 

  18. H E Grenga and R Kumar Surf. Sci. 61 283 (1976)

    Article  ADS  Google Scholar 

  19. B Zhang, W Hu and X Shu Theory of Embedded Atom Method and its Application to Materials Science − Atomic Scale Materials Design Theory. (Changsha: Hunan University Press) (2003)

    Google Scholar 

  20. Y N Wen and J M Zhang Comp. Mater. Sci. 42 281 (2008)

    Article  Google Scholar 

  21. H Jin, J An and Y Jong Appl. Phys. A 120 189 (2015)

    Article  ADS  Google Scholar 

  22. W Hu, X Shu and B Zhang Comp. Mater. Sci. 23 175 (2002)

    Article  Google Scholar 

  23. G Jong, P Song and H Jin Indian J. Phys. 94 753 (2020)

    Article  ADS  Google Scholar 

  24. G Jong, H Jin and P Song Appl. Phys. A 126 901 (2020)

    Article  ADS  Google Scholar 

  25. H-S Jin, S-W Kim, K-C Kim and H Yang J. Mol. Model. 26 189 (2020)

    Article  Google Scholar 

  26. H Jin, J Pak and Y Jong Appl. Phys. A 123 257 (2017)

    Article  ADS  Google Scholar 

  27. C Jon, H Jin and C Hwang Radiat. Eff. Defects Solids 172 575 (2017)

    Article  ADS  Google Scholar 

  28. C Jon, H Jin, C Ri and P Song Philos. Mag. B 99 2604 (2019)

    Article  ADS  Google Scholar 

  29. L Vitos, A V Ruban, H L Skriver and J Kollár Surf. Sci. 411 186 (1998)

    Article  ADS  Google Scholar 

  30. M W Finnis and J E Sinclair Philos. Mag. A 50 45 (1984)

    Article  ADS  Google Scholar 

  31. W R Tyson and W A Miller Surf. Sci. 62 267 (1977)

    Article  ADS  Google Scholar 

  32. J K Mackenzie, A J W Moore and J F Nicholas J. Phys. Chem. Solids. 23 185 (1962)

    Article  ADS  Google Scholar 

  33. H L Skriver and N M Rosengaard Phys. Rev. B 46 7157 (1992)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2020YFC1909800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hak-Son Jin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, HS., Ri, KS., Choe, YM. et al. Evaluation of surface energy and its anisotropy for bcc transition metals by modified embedded atom method. Indian J Phys 96, 3099–3104 (2022). https://doi.org/10.1007/s12648-021-02237-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02237-4

Keywords

Navigation