Skip to main content
Log in

Ab initio calculations of Electronic, Magneto-Optical, and Transport Properties of the Ga1-2xSmxEuxN alloy (x = 0.0625) by GGA, GGA + U, and TB-mBj approximations

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

This article introduces and develop a new area of transparent conducting material by doping GaN with two rare earth (RE) impurities (Eu, Sm). Our theoretical calculations confirm that the co-doped compound exhibits half-metallic ferromagnet (HMF) with 100% spin polarization at the Fermi level using GGA and mBJ. To determine which magnetic configuration is the most stable one, we compared the energy of ferromagnetic and antiferromagnetic states. Our results suggest that the ferromagnetic state is the most stable ground state. The exchange splitting energy and exchange constants \(N_{0} \alpha\) and \(N_{0} \beta\) are calculated. Additionally, we determined the electron specific heat ‘c’. It has a high optical transmittance and conductivity. These properties make GaN doped with double rare-earth impurities a potential material in optoelectronic and solar cell applications. For the calculations of mechanical, optical, and transport properties, the generalized gradient approximation + Hubbard U (GGA + U) and the modified Becke–Johnson (GGA-TB-mBJ) approximations were used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Z Yao, Y S Zhang and K L Yao Appl. Phys. Lett 101 062402 (2012)

    Article  ADS  Google Scholar 

  2. J Blinowski Rev. B 53 9524 (1996)

    Article  Google Scholar 

  3. R C Powell and N E Lee J. Appl. Phys 78 189 (1993)

    Article  ADS  Google Scholar 

  4. M H Eisa Results Phys 13 102330 (2019)

    Article  Google Scholar 

  5. B N Pantha, et al. Appl. Phys. Lett 92 042112 (2008)

  6. M Zhang and J J Shi Chin. Phys. B 23 017301 (2014)

    Article  ADS  Google Scholar 

  7. M Lantri, A Boukortt and S Meskine Phys. Lett. B 33 1950327 (2019)

    Google Scholar 

  8. L Cai and C Feng J. Nanotechnol 2017 1 (2017)

    Article  Google Scholar 

  9. D Andiwijayakusuma, M Saito and A Purqon J. Phys. Conf. Ser. 739 012027 (2016)

    Article  Google Scholar 

  10. S Dhar, O Brandt, M Ramsteiner, V F Sapega and K H Ploog Phys. Rev. Lett 94 037205 (2005)

    Article  ADS  Google Scholar 

  11. J H Park, E Vescovo, H J Kim, C Kwon, R Ramesh and T Venkatesan Nature 392 794 (1998)

    Article  ADS  Google Scholar 

  12. W E Pickett and J S Moodera Phys. Today 54 39 (2001)

    Article  ADS  Google Scholar 

  13. A R Jivani and A R Jani Ind. J. Phys. 90 179 (2016)

    Article  Google Scholar 

  14. S Francis J. Phys. 89 825 (2015)

    Google Scholar 

  15. E A Choi and K J Chang Phys. Rev. B 401 319 (2007)

    Google Scholar 

  16. P Blaha, K Schwarz, G K H Madsen, D Kvasnicka and J Luitz WIEN2K: An Augmented Plane Wave and Local Orbitals Program for Calculating Crystal Properties, edited by K. (Schwarz: Vienna University of Technology, Austria) (2001)

    Google Scholar 

  17. G K H Madsen, P Blaha, K E Schwarz, E Sjostedt and L Nordstrom Phys. Rev. B 64 195134 (2001)

    Article  ADS  Google Scholar 

  18. J P Perdew Rev. Lett 77 3865 (1996)

    Article  ADS  Google Scholar 

  19. F Tran and P Blaha Phys. Rev. Lett 102 226401 (2009)

    Article  ADS  Google Scholar 

  20. A D Becke and M R Roussel Phys. Rev. A 39 3761 (1989)

    Article  ADS  Google Scholar 

  21. B Himmetoglu, A Floris, S D Gironcoli and M Cococcioni Int. J. Quantum. Chem. 114 14 (2014)

    Article  Google Scholar 

  22. M Cococcioni, The LDA+U approach: A simple hubbard correction for correlated ground states. Correlated Electrons: From Models to Materials Modeling and Simulation, Forschungszentrum Julich, Germany. 2 (2012)

  23. S L Dudarev, G A Botton and S Y Savarsov Rev. B 57 1505 (1998)

    Article  Google Scholar 

  24. E Maskar et al Surf. Interfaces 24 101051 (2021)

    Article  Google Scholar 

  25. F D Murnaghan Proceedings of the National Academy of Sciences USA 30 244 (1944)

  26. A Trampert, O Brandt and K H Ploog. 1998. in Crystal Structure of Group III Nitrides Semiconductors and Semimetals Vol. 50 (Academic), Editor:J.I. Pankove et al, San Diego

  27. Z Usman, C Cao, W S Khan and T Mahmood J. Phys. Chem. A 115 14502 (2011)

    Article  Google Scholar 

  28. N Arikan, G D Yildiz, Y G Yildiz and A İyigör J. Electron. Mater. 49 3052 (2020)

    Article  ADS  Google Scholar 

  29. E Maskar et al J. Supercond. Nov. Mag. 34 2105 (2021). https://doi.org/10.1007/s10948-021-05938-3

    Article  Google Scholar 

  30. M Pang, Y Zhan, M Ling, S Wei, Y Liu and Y Du Solid State. Commun. 151 1135 (2011)

    Article  ADS  Google Scholar 

  31. Z Wu, E Zhao, H Xiang, X Hao, X Liu and J Meng Phys. Rev. B 76 054115 (2007)

    Article  ADS  Google Scholar 

  32. W Voigt, Lehrbuch der Kristallphysik (mit Ausschluss der Kristalloptik), B. G. Teubner, Berlin, Germany (1910)

  33. A Reuss ZAMM—Zeitschrift f ur Angewandte Mathematik und Mechanik 9 49 (1929)

  34. R Hill Proc. Phys. Soc. A 65 349 (1952)

    Article  ADS  Google Scholar 

  35. S F Pugh London Edinburgh Philos. Mag. J. Sci. 45 823 (1954)

    Article  Google Scholar 

  36. R C Powell and N E Lee J. Appl. Phys 73 189 (1993)

    Article  ADS  Google Scholar 

  37. B Ul-Haq, R Ahmed, A Shaari, F El-Haj-Hassan, M B Kanoun and S Goumri-Said J. Sol. Energy 107 543 (2014)

    Article  ADS  Google Scholar 

  38. Q Mahmood, M Yaseen, C K Bhamu, A Mahmood, Y Javed and M S Ramay Chin. Phys. B 27 037103 (2018)

    Article  ADS  Google Scholar 

  39. A E Merad J. Magn. Magn. Mater 302 536 (2006)

    Article  ADS  Google Scholar 

  40. J Li, X Xu and Y Zhou J. Alloys Compd. 575 190 (2013)

    Article  Google Scholar 

  41. A G E Hachimi, H Zaari and A Benyoussef J. Rare Earth 32 715 (2014)

    Article  Google Scholar 

  42. M Dressel and G Grüner Electrodynamics of Solids: Optical Properties of Electrons in Matter. (Cambridge: Cambridge University Press) (2002) https://doi.org/10.1017/CBO9780511606168

    Book  Google Scholar 

  43. M Alouani and J Wills J. Phys. Rev. B 54 2480 (1996)

    Article  ADS  Google Scholar 

  44. Y Wan-Jun, Q Xin-Mao and Z Chun-Hong J. Nanomater. Mol. Nanotechnol 7 6 (2018)

    Google Scholar 

  45. F Wooten Optical Properties of Solids (New York: Academic Press) (1972)

  46. S Azam et al Bull. Mater. Sci 43 138 (2020)

    Article  Google Scholar 

  47. J Zou, L Zeng and Y Li Mater. Res. Express 6 126304 (2019)

    Article  ADS  Google Scholar 

  48. J I Pankove Optical Processes in Semiconductors, Dover, New York (1975)

  49. M Child and O Koskinen J. Renew. Sustain. Energy 91 321 (2018)

    Article  Google Scholar 

  50. M Umer et al J. Phys. B: Condens. Matter 545 330 (2018)

    Article  ADS  Google Scholar 

  51. S Malki and L El Int. J. Thermophys 41 58 (2020)

    Article  ADS  Google Scholar 

  52. G K H Madsen and D J Singh Comput. Phys. Commun 175 67 (2006)

    Article  ADS  Google Scholar 

  53. E Maskar et al Superlattices and Microstructures 150 106776 (2020)

    Article  Google Scholar 

  54. B P Bahuguna and L K Saini J. Phys. Chem. Chem. Phys 20 28575 (2018)

    Article  Google Scholar 

  55. N W Ashcroft and N D Mermin Solid state physics. (Philadelphia: Saunders College) (1976)

    MATH  Google Scholar 

  56. Z M Zhang Nano/microscale heat transfer. (New York: McGraw-Hill) (2007)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Rai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maskar, E., Lamrani, A.F., Belaiche, M. et al. Ab initio calculations of Electronic, Magneto-Optical, and Transport Properties of the Ga1-2xSmxEuxN alloy (x = 0.0625) by GGA, GGA + U, and TB-mBj approximations. Indian J Phys 96, 2783–2794 (2022). https://doi.org/10.1007/s12648-021-02230-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02230-x

Keywords

Navigation