Skip to main content
Log in

Changes in atmospheric parameters due to annular solar eclipse of June 21, 2020, over India

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In the present study, various solar and atmospheric parameters, namely solar radiation, surface ozone, relative humidity, air temperature, and wind speed, have been studied first time for the annular solar eclipse of June 21, 2020, at seven Indian stations simultaneously. All the seven different stations are selected along the solar eclipse path having the maximum eclipse magnitude of 92% and above. The various atmospheric parameters have shown the change in behavior during the solar eclipse duration. The incoming solar radiation has a maximum 95.97% decrease at Ludhiana at the time of maximum obscuration compared to the previous day. The surface ozone concentration has shown a decrease for all the seven stations during the maximum obscuration period. A maximum of 9.25% decrease in surface temperature has been observed nearly after 30 min of the time of maximum obscuration of the eclipse. Relative humidity started increasing at all the stations and showed an inverse trend from temperature. The wind speed was found to suppress during the maximum solar eclipse which may be attributed to stabilization of atmospheric boundary layer due to cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

All the data used in the present study are obtained from the Centre Pollution Control Board (CPCB): https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing/data. The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. P S Harrington John Wiley & Sons, Inc. New York (1997)

  2. T Z Gogosheva, B Petkov and D Kristev Geomagn. Aeronomy 42 274 (2002)

    Google Scholar 

  3. J D Huba and D Drob Geophys. Res. Lett. 44 5928 (2017)

    Article  ADS  Google Scholar 

  4. C Varotsos and M Efstathiou Atmos. Environ. 39 4041 (2005)

    Article  ADS  Google Scholar 

  5. C Tzanis C Varotsos and L Viras Atmos Chem. Phys. 8 425 (2008)

    ADS  Google Scholar 

  6. S Bezverkhny and A L Osherovich S F Rodionov Doklady Ak Sci. USSR 106 651 (1956)

    Google Scholar 

  7. A K Khrigian and G I Kuznezov Proc. Third USSR Conf. on Atmos. Ozone (GIMIZ, Leningrad 26 (1965)

  8. N Jerlov, H Olsaon and W Schuepp. Tellus 6 44 (1945)

  9. R S Steblova Geomagn. Aeron 2 127 (1962)

  10. B Svensson Arkiv för Geofysik2 28 (1968)

  11. D K Chakrabarty and N C Shah K V Pandya Geophys. Res. Lett. 24 23 3001 (1997)

    Article  ADS  Google Scholar 

  12. C S Zerefos et al. Adv Space Res. 27 1955 (2001)

    Article  ADS  Google Scholar 

  13. J Anderson Royal Meteorological Soc. Weather 54 207 (1999)

  14. K L Aplin and R G Harrison Proc. Mathematical, Physical and Engineering Sciences, 459 353 (2003)

  15. S L Gray, and R G Harrison Proc. of the Royal Soc. A: Mathematical, Physical and Engineering Sciences, 468 1839 (2012)

  16. K L Aplin, C J Scott and S L Gray Philos. Trans. of the Royal Soc. A: Mathematical, S Physical and Engineering Sciences, 374 (2077) 24 (2016)

  17. B Vogel, M Baldauf, and F Fiedler Meteorol. Z. 10 207 (2001)

  18. E Gerasopoulos et al. Atmos. Chem. Phys. 8 17663 (2008)

    Article  Google Scholar 

  19. A K Maurya et al. J. Geophys. Res. Space Physics 119 8512 (2014)

    Article  ADS  Google Scholar 

  20. Kumar, A Kumar, A K Maurya, and R Singh, J. Geophys. Res. Space Phys. 121 5930 (2016)

  21. G Chimonas J. Geophys. Res., 75(28) 5545 (1970)

  22. C S Zerefos et al. Atmos. Chem. Phys. 7 4943 (2007)

    Article  ADS  Google Scholar 

  23. I Y Babakhanov, A Y Belinskaya, M A Bizin, O M Grekhov, S Y Khomutov, V V Kuznetsov and A F Pavlov J. Atmos. Terr. Phys. 92 1 (2013)

    Article  ADS  Google Scholar 

  24. J Y Liu et al. J. Atmos. Sol. Terr. Phys. 60 1679 (1998)

    Article  ADS  Google Scholar 

  25. D Altadill, J G Sole and E M Apostolov J. Geophys. Res. 106 21419 (2001)

    Article  ADS  Google Scholar 

  26. S Kumar, A K Singh and R P Singh Ann. Geophys. 31 1549 (2013)

    Article  ADS  Google Scholar 

  27. S Yadav, R M Das, R S Dabas and A K Gwal Adv. Space Res. 51 2043 (2013)

    Article  ADS  Google Scholar 

  28. J Bošková and J Laštovička Stud. Geophys. Geod. 45 85 (2001)

    Article  Google Scholar 

  29. L F Chernogor Geomagn. Aeron. 50 96 (2010)

    Article  ADS  Google Scholar 

  30. M V Ratnam, S Eswaraiah, P P Leena, A K Patra, B V KrishnaMurthy and S V B Rao J. Atmos. Sol. Terr. Phys. 80 340 (2012)

    Article  ADS  Google Scholar 

  31. M A Clilverd, C J Rodger, N R Thomson, J Lichtenberger, P Steinbach, P Cannon and M J Angling Radio Sci. 36 4 773 (2001)

    Article  ADS  Google Scholar 

  32. T Kameda, K Fujita, O Sugita, N Hirasawa and S Takahashi J of Geophys Res 114 D18 (2009)

    Google Scholar 

  33. D Founda et al. Atmos. Chem. Phys. Discuss. 7 10631 (2007)

    ADS  Google Scholar 

  34. W Fernandez H Hidalgo G Coronel, and E Morales Earth Moon Planets 74 49 (1996)

    Article  ADS  Google Scholar 

  35. P M Ramchandran, R Ramchandran, K S Gupta and S M Patil P N Jadhav Bound-Layer Meteorol. 104 445 (2002)

    Article  ADS  Google Scholar 

  36. P Krishnan et al J Earth Syst. Sci. 113 353 (2004)

    Article  ADS  Google Scholar 

  37. R Bhattacharya and M Roy Md Biswas, R Guha, and A Bhoumick Curr Sci. 98 1609 (2010)

    Google Scholar 

  38. Y S Chung, H S Kim, and S H Choo Air Qual Atmos Health 125 (2010)

  39. S Burt Weather. 73 90 (2018)

  40. S B S Prasad et al J. Meteor. Res. 33 4 (2019)

    Article  Google Scholar 

  41. V Amiridis et al Atmos Chem. and Phys. European Geosciences Union 7 24 (2007)

    Google Scholar 

  42. C S Zerefos et al Atmos. Chem. Phys. 7 7603 (2007)

    Google Scholar 

  43. S K Sharma et al Ann. Geophys. 28 1199 (2010)

    Article  ADS  Google Scholar 

  44. P M Muraleedharan, P G Nisha, K Mohankumar J. of Atmos. and Sol.-Terres. Phys., 73 13 (2011)

  45. N Kolev et al Int. J. of Remote Sensing 26 16 (2005)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thanks Central pollution control board (CPCB) for providing data for different stations: https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing/data.

Funding

The work is partially supported by SERB, New Delhi for the CRG project (File No: CRG/2019/000573) and partially by the Institute of Imminence (IoE) Program of BHU, Varanasi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A K Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, K., Singh, A.K. Changes in atmospheric parameters due to annular solar eclipse of June 21, 2020, over India. Indian J Phys 96, 1613–1624 (2022). https://doi.org/10.1007/s12648-021-02112-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02112-2

Keywords

Navigation