Skip to main content
Log in

Analytical approximations to the l-wave solutions of the Klein–Gordon equation with position-dependent mass for mixed vector and scalar Hulthén-type potentials by using SUSYQM approach

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, we investigate the approximate bound states solutions of Klein–Gordon equation with position-dependent mass for scalar and vector central Hulthén-type potentials by applying an approximation scheme to deal with the centrifugal potential for any l-states. The supersymmetric quantum mechanics (SUSYQM) and shape invariance approaches are used in the calculations. We obtain straightforwardly the relativistic energies and their corresponding normalized wavefunctions, expressed in terms of Jacobi polynomials. Special cases of interest of this problem are also deduced and it is found that our results are in good agreement with those obtained in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W Greiner Relativistic Quantum Mechanics (Berlin: Springer) (2000)

  2. F Dominguez-Adame Phys. Lett. A136 175 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  3. L Chetouani, L Guechi, A Lecheheb, T F Hammann and A Messouber Physica. A 234 529 (1996)

    Article  ADS  Google Scholar 

  4. F Benamira, L Guechi and A Zouache Phys. Lett. A 367 498 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  5. C L Pekeris Phys. Rev. 45 98 (1934)

    Article  ADS  Google Scholar 

  6. R L Greene and C Aldrich Phys. Rev. A 14 2363 (1976)

    Article  ADS  Google Scholar 

  7. Y Xu, S He and C S Jia Phys. Scr. 81 045001 (2010)

    Article  ADS  Google Scholar 

  8. C Y Long, S J Qin, X Zhang and G F Wei Acta. Physica. Sinica. 57 6730 (2008)

    Article  Google Scholar 

  9. F Benamira, L Guechi, S Mameri and M A Sadoun J. Math. Phys. 51 032301 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  10. C Y Chen, D S Sun and F L Lu Phys. Lett. A 370 219 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  11. S Haouat and L Chetouani Phys. Scr. 77 025005 (2008)

    Article  ADS  Google Scholar 

  12. F Benamira, L Guechi and A Zouache Phys. Lett. A 372 7199 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  13. L Aggoun, F Benamira, L Guechi and M A Sadoun Few-Body Syst. 57 229 (2016)

    Article  ADS  Google Scholar 

  14. A I Ahmadov, S M Aslanova, M Sh Orujova, S V Badalov and S H Dong Phys. Lett. A 383 3010 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  15. M Znojil Phys. Lett. A 102 289 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  16. A I Ahmadov, M Demirci, S M Aslanova and M F Mustamin Phys. Lett. A 384 126372 (2020)

    Article  MathSciNet  Google Scholar 

  17. A Mathebula and S Jamal Indian J. Phys. (2020). https://doi.org/10.1007/s12648-020-01810-7

  18. S Jamal and A Paliathanasis J. Geom. Phys. 117 50 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  19. S Jamal and G Shabbir Eur. Phys. J. Plus. 132 70 (2017)

    Article  Google Scholar 

  20. J M Luttinger and W Kuhn Phys. Rev. 97 869 (1955)

    Article  ADS  Google Scholar 

  21. G H Wanner Phys. Rev. 52 191 (1957)

    Article  ADS  Google Scholar 

  22. J C Slater Phys. Rev. 52 1592 (1949)

    Article  ADS  Google Scholar 

  23. L Serra and E Lipparini Eur. Phys. Lett. 40 667 (1997)

    Article  ADS  Google Scholar 

  24. T Gora and F Williams Phys. Rev. 177 11979 (1969)

    Article  Google Scholar 

  25. A de Souza Dutra and C S Jia Phys. Lett. A 352 484 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  26. C S Jia, X P Li and L H Zhang Few-Body Syst. 52 11 (2012)

    Article  ADS  Google Scholar 

  27. N Zaghou, F Benamira and L Guechi Eur. Phys. J. Plus. 40 132 (2017)

    Google Scholar 

  28. T Q Dai and Y F Cheng Phys. Scr. 79 015007 (2009)

    Article  ADS  Google Scholar 

  29. S M Ikhdair Eur. Phys. J. A 40 143 (2009)

    Article  ADS  Google Scholar 

  30. A Arda, R Sever and C Tezcan Phys. Scr. 79 015006 (2009)

    Article  ADS  Google Scholar 

  31. M Farrokh, M R Shojaeia and A A Rajabi Eur. Phys. J. Plus. 128 14 (2013)

    Article  Google Scholar 

  32. S Ikhdair and R Sever Phys. Scr. 79 035002 (2009)

    Article  ADS  Google Scholar 

  33. E Olğar and H Mutaf Commun. Theor. Phys. 53 1043 (2010)

    Article  ADS  Google Scholar 

  34. M K Bahar and F Yasuk Adv. High. Energy. Phys. 2013 814985 (2013)

    Article  Google Scholar 

  35. A de Souza Dutra and C A S Almeida, Phys. Lett. A 275 25 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  36. A Tas, O Aydoğdu, M Salti and J Koe Phys. Soc. 70 896 (2017)

    Google Scholar 

  37. F Cooper, A Khare and U P Sukhatme Supersymmetry in Quantum Mechanics ((Singapore: World Scientific)) (2001)

    Book  MATH  Google Scholar 

  38. F Cooper, A Khare and U P Sukhatme Phys. Rep. 251 267 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  39. L E Gendenshtein JETP Lett. 38 356 (1983)

    ADS  Google Scholar 

  40. L Hulthén Ark. Mat. Astron. Fys. A 28 5 (1942)

    MathSciNet  Google Scholar 

  41. B Durand and L Durand Phys. Rev. D 23 1092 (1981)

    Article  ADS  Google Scholar 

  42. R L Hall Phys. Rev. A 32 14 (1985)

    Article  ADS  Google Scholar 

  43. J Bhoi and U Laha Theor. Math. Phys. 190 69 (2017)

    Article  Google Scholar 

  44. T Tietz J. Chem. Phys. 35 1917 (1961)

    Article  ADS  Google Scholar 

  45. I S Bitensky, V K Ferleger and I A Wojciechowski Nucl. Instr. Methods Phys. Res. B 125 201 (1997)

    Article  ADS  Google Scholar 

  46. P Pyykko and J Jokisaari Chem. Phys. 10 293 (1975)

    Article  Google Scholar 

  47. J A Olson and D A Micha, J. Chem. Phys. 68 4352 (1978)

    Article  ADS  Google Scholar 

  48. N Zaghou, F Benamira and L Guechi Indian J. Phys. 95 1445 (2020). https://doi.org/10.1007/s12648-020-01809-0

  49. L E Gendenshtein and l V Krive Sov. Phys. Usp. 28 645 (1985)

  50. R Dutt, A Khare and U P Sukhatme Phys. Lett. B 181 295 (1986)

    Article  ADS  Google Scholar 

  51. J W Dabrowska, A Khare and U P Sukhatme J. Phys. A: Math. Gen. 21 L195 (1988)

    Article  ADS  Google Scholar 

  52. I S Gradshteyn and I M Ryzhik Tables of Integrals, Series and Products (New York: Academic Press) (2007)

    MATH  Google Scholar 

  53. S M Ikhdair Int. J. Mod. Phys. C 20 25 (2009)

  54. A S de Castro Phys. Lett. A 338 81 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Algerian government for the financial assistance allocated within the framework of PRFU Project under the code B00L02UN250120180018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Zaghou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaghou, N., Benamira, F. & Guechi, L. Analytical approximations to the l-wave solutions of the Klein–Gordon equation with position-dependent mass for mixed vector and scalar Hulthén-type potentials by using SUSYQM approach. Indian J Phys 96, 1105–1116 (2022). https://doi.org/10.1007/s12648-021-02068-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02068-3

Keywords

Navigation