Skip to main content

Advertisement

Log in

MAPbI3-based efficient, transparent and air-stable broadband photodetectors

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Numerous structures have been reported in search of affordable self-powered broadband photodetectors, however with limited success. The hybrid perovskite heterostructures have been attracted great attention due to their advance optical and electrical properties. The stability and facile synthesis are critical issues in achieving the potential success of realizing perovskite-based photodetectors. Herein, we report a facile one-step spray-coated method to synthesize MAPbI3 perovskite polycrystalline thin-film on the glass as photodetector followed by their morphological (Atomic force microscopy), structural (X-ray diffraction/Fourier transform infrared spectroscopy, optical (UV–Vis), and electrical characterization. The device shows a very good response for visible and NIR region with the responsivity, detectivity, and external quantum efficiency of 1.682 mA/W, 1.5065 × 1012 Jones, and 0.3799, respectively. Further, the device exhibits photoresponse under visible to IR (400–900 nm) light illuminations, which holds great futuristic promises for affordable, broadband, stable, and efficient energy-conserving electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Q Li, J van de Groep, Y Wang, P G Kik and M L Brongersma Nat. Commun. 10 (2019)

  2. A Tittl, A K U Michel, M Schäferling, X Yin, B Gholipour, L Cui, M Wuttig, T Taubner, F Neubrech and H Giessen Adv. Mater. 27 4597 (2015)

    Article  Google Scholar 

  3. C Choi, M K Choi, S Liu, M S Kim, O K Park, C Im, J Kim, X Qin, G J Lee, K W Cho, M Kim, E Joh, J Lee, D Son, S H Kwon, N L Jeon, Y M Song, N Lu and D H Kim Nat. Commun. 8 (2017)

  4. L B Luo, D Wang, C Xie, J G Hu, X Y Zhao and F X Liang Adv. Funct. Mater. 29 (2019)

  5. P Büchele, M Richter, S F Tedde, G J Matt, G N Ankah, R Fischer, M Biele, W Metzger, S Lilliu, O Bikondoa, J E Macdonald, C J Brabec, T Kraus, U Lemmer and O Schmidt Nat. Photonics 9 843 (2015)

    Article  ADS  Google Scholar 

  6. L Peng, L Hu and X Fang Adv. Funct. Mater. 24 2591 (2014)

    Article  Google Scholar 

  7. G Konstantatos and E H Sargent Nat. Nanotechnol. 5 391 (2010)

    Article  ADS  Google Scholar 

  8. A S Pawbake, R G Waykar, D J Late and S R Jadkar ACS Appl. Mater. Interfaces 8 3359 (2016)

    Article  Google Scholar 

  9. S R Tamalampudi, Y Y Lu, U R Kumar, R Sankar, C da Liao, K B Moorthy, C H Cheng, F C Chou and Y T Chen Nano Lett. 14 2800 (2014)

  10. D S Tsai, K K Liu, D H Lien, M L Tsai, C F Kang, C A Lin, L J Li and J H He ACS Nano 7 3905 (2013)

    Article  Google Scholar 

  11. T Journot, V Bouchiat, B Gayral, J Dijon and B Hyot ACS Appl. Mater. Interfaces 10 18857 (2018)

    Article  Google Scholar 

  12. X Li, M Zhu, M Du, Z Lv, L Zhang, Y Li, Y Yang, T Yang, X Li, K Wang, H Zhu and Y Fang Small 12 595 (2016)

    Article  Google Scholar 

  13. H Tan, C Fan, L Ma, X Zhang, P Fan, Y Yang, W Hu, H Zhou, X Zhuang, X Zhu and A Pan Nano Micro Lett. 8 29 (2016)

    Article  Google Scholar 

  14. Z K Tan, R S Moghaddam, M L Lai, P Docampo, R Higler, F Deschler, M Price, A Sadhanala, L M Pazos, D Credgington, F Hanusch, T Bein, H J Snaith and R H Friend Nat. Nanotechnol. 9 687 (2014)

    Article  ADS  Google Scholar 

  15. S C Hermosa, S K Yadav, L Vesce, A Guidobaldi, A Reale, A Di Carlo and T M Brown J. Phys. D: Appl. Phys. 50 033001 (2016)

    Article  Google Scholar 

  16. V Adinolfi, O Ouellette, M I Saidaminov, G Walters, A L Abdelhady, O M Bakr and E H Sargent Adv. Mater. 28 7264 (2016)

    Article  Google Scholar 

  17. A Kojima, K Teshima, Y Shirai and T Miyasaka J. Am. Chem. Soc. 131 6050 (2009)

    Article  Google Scholar 

  18. M Hu, C Bi, Y Yuan, Y Bai and J Huang Adv. Sci. 3 (2015)

  19. Y Deng, E Peng, Y Shao, Z Xiao, Q Dong and J Huang Energy Environ. Sci. 8 1544 (2015)

    Article  Google Scholar 

  20. C Wehrenfennig, G E Eperon, M B Johnston, H J Snaith and L M Herz Adv. Mater. 26 1584 (2014)

    Article  Google Scholar 

  21. A Marchioro, J Teuscher, D Friedrich, M Kunst, R van de Krol, T Moehl, M Grätzel and J E Moser Nat. Photonics 8 250 (2014)

    Article  ADS  Google Scholar 

  22. J Ding, S Du, Z Zuo, Y Zhao, H Cui and X Zhan J Phys Chem C 121 4917 (2017)

    Article  Google Scholar 

  23. C Bao, Z Chen, Y Fang, H Wei, Y Deng, X Xiao, L Li and J Huang Adv. Mater. 29 (2017)

  24. J Feng, C Gong, H Gao, W Wen, Y Gong, X Jiang, B Zhang, Y Wu, Y Wu, H Fu, L Jiang and X Zhang Nat. Electron. 1 404 (2018)

    Article  Google Scholar 

  25. T Baikie, Y Fang, J M Kadro, M Schreyer, F Wei, S G Mhaisalkar, M Graetzel and T J White J. Mater. Chem. A 1 5628 (2013)

    Article  Google Scholar 

  26. Y Zhao and K Zhu J. Phys. Chem. C 118 9412 (2014)

    Article  Google Scholar 

  27. X Hu, X Zhang, L Liang, J Bao, S Li, W Yang and Y Xie Adv. Funct. Mater. 24 7373 (2014)

    Article  Google Scholar 

  28. H Deng, X Yang, D Dong, B Li, D Yang, S Yuan, K Qiao, Y B Cheng, J Tang and H Song Nano Lett. 15 7963 (2015)

    Article  ADS  Google Scholar 

  29. Y Fang and J Huang Adv. Mater. 27 2804 (2015)

    Article  Google Scholar 

  30. S Chen, C Teng, M Zhang, Y Li, D Xie and G Shi Adv. Mater. 28 5969 (2016)

    Article  Google Scholar 

  31. Q Hu, H Wu, J Sun, D Yan, Y Gao and J Yang Nanoscale 8 5350 (2016)

    Article  ADS  Google Scholar 

  32. S Li, Y Li, Z Shi, L Lei, H Ji, D Wu, T Xu, X Li and G Du Sol. Energy Mater. Sol. Cells 191 275 (2019)

    Article  Google Scholar 

  33. Y Zhao and K Zhu J. Phys. Chem. Lett. 4 2880 (2013)

    Article  Google Scholar 

  34. Y Zhang, Y Liu, Z Yang and S (Frank) Liu J. Energy Chem. 27 722 (2018)

  35. J Burschka, N Pellet, S J Moon, R Humphry-Baker, P Gao, M K Nazeeruddin and M Grätzel Nature 499 316 (2013)

    Article  ADS  Google Scholar 

  36. G Xing, N Mathews, S Sun, S S Lim, Y M Lam, M Grätzel, S Mhaisalkar and T C Sum Science 342 344 (2013)

    Article  ADS  Google Scholar 

  37. T P Gujar, T Unger, A Schönleber, M Fried, F Panzer, S van Smaalen, A Köhler and M Thelakkat Phys. Chem. Chem. Phys. 20 605 (2017)

    Article  Google Scholar 

  38. J W Lee, S H Bae, N de Marco, Y T Hsieh, Z Dai and Y Yang Mater. Today Energy 7 149 (2018)

    Article  Google Scholar 

  39. J Chen, T Shi, X Li, B Zhou, H Cao and Y Wang Appl. Phys. Lett. 108 (2016)

  40. I J Gomez, B Arnaiz, M Cacioppo, F Arcudi and M Prato J. Mater. Chem. B 6 (2018)

  41. W F Murphy and H J Bernstein J. Phys. Chem. 76 1147 (1972)

    Article  Google Scholar 

  42. T Glaser, C Müller, M Sendner, C Krekeler, O E Semonin, T D Hull, O Yaffe, J S Owen, W Kowalsky, A Pucci and R Lovrinčić J. Phys. Chem. Lett. 6 2913 (2015)

    Article  Google Scholar 

  43. M A Pérez-Osorio, R L Milot, M R Filip, J B Patel, L M Herz, M B Johnston and F Giustino J. Phys. Chem. C 119 25703 (2015)

    Article  Google Scholar 

  44. T Zhang, M Yang, Y Zhao and K Zhu Nano Lett. 15 3959 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

PK acknowledges SERB Project “ECR/2018/001491” for financial support. The authors also extend their sincere appreciation to Researchers Supporting Project Number (RSP-2020/130) at King Saud University, Riyadh, Saudi Arabia, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maity, S., Lokku, V.K., Lata, A. et al. MAPbI3-based efficient, transparent and air-stable broadband photodetectors. Indian J Phys 96, 903–908 (2022). https://doi.org/10.1007/s12648-020-02004-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-02004-x

Keywords

Navigation