Skip to main content
Log in

Passively Q-switched thulium fluoride fiber laser operating in S-band region using N-doped graphene saturable absorber

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

A passively Q-switched S-band fiber laser is proposed and demonstrated using a thulium-doped fluoride fiber as laser gain medium. The proposed design possesses significant advantages including broader tuning wavelength range as compared to previously reported Q-switched S-band lasers. The laser cavity is configured in a simple forward-pumped ring design with a 1400 nm single upconversion pumping scheme. Q-switching is achieved using a polyvinyl alcohol/nitrogen-doped graphene nanosheet (PVA–N-Gns)-based thin-film saturable absorber. Stable Q-switched pulses are obtained at a center wavelength of 1504.7 nm over a pump power range from 101.8 to 280.6 mW. The generated pulses have a maximum pulse repetition rate of 36.85 kHz and minimum pulse width of 4.8 μs at the pump power of 280.6 mW. The maximum pulse output power of 1.30 mW indicates a laser efficiency of approximately 0.63% while a signal-to-noise ratio of 57 dB shows pulse stability. The ability of the proposed cavity design to produce broad wavelength tunability range from 1450 to 1510 nm make it highly suitable for various application in the S and S + band regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A S Kurkov, Y E Sadovnikova, A V Marakulin, E M Sholokhov Laser Phys. Lett. 7 795 (2010)

    Article  ADS  Google Scholar 

  2. M Laroche, A M Chardon, J Nilsson, D P Shepherd, W A Clarkson, S Girard, R Moncorge Opt. Lett. 27 1980 (2002)

    Article  ADS  Google Scholar 

  3. J Liu, S Wu, Q H Yang, P Wang Opt. Lett. 36 4008 (2011)

    Article  ADS  Google Scholar 

  4. Z Luo, M Zhou, J Weng, G Huang, H Xu, C Ye, Z Cai Opt. Lett. 35 3709 (2010)

    Article  ADS  Google Scholar 

  5. D P Zhou, L Wei, B Dong, W K Liu, IEEE Photon. Technol. Lett. 22 9 (2010)

    Article  Google Scholar 

  6. W J Cao, H Y Wang, A P Luo, Z C Luo, W C Xu Laser Phys. Lett. 9 54 (2011)

    Article  Google Scholar 

  7. J.J. Degnan IEEE J. Quantum Electron. 31 1890 (1995)

  8. B I i Denker, G V Maksimova, V V e Osiko, S E e Sverchkov, Y E Sverchkov Quantum Electron. 21 774 (1991)

  9. T Jiang, Y Xu, Q Tian, L Liu, Z Kang, R Yang, G Qin, W Qin Appl. Phys. Lett. 101 151122 (2012)

    Article  ADS  Google Scholar 

  10. S W Harun, M A Ismail, F Ahmad, M F Ismail, R M Nor, N R Zulkepely, H Ahmad Chin. Phys. Lett. 29 114202 (2012)

    Article  ADS  Google Scholar 

  11. Y Huang, Z Luo, Y Li, M Zhong, B Xu, K Che, H Xu, Z Cai, J Peng, J Weng Opt. Express 22 25258 (2014)

    Article  ADS  Google Scholar 

  12. Z Luo, C Liu, Y Huang, D Wu, J Wu, H Xu, Z Cai, Z Lin, L Sun, J Weng IEEE J. Sel. Top. Quantum Electron. 20 1 (2014)

    Google Scholar 

  13. W Yang, J Hou, B Zhang, R Song, Z Liu Appl. Opt. 51 5664 (2012)

    Article  ADS  Google Scholar 

  14. D Mao, X Cui, Z He, H Lu, W Zhang, L Wang, Q Zhuang, S Hua, T Mei, J Zhao Nanoscale (2018)

  15. D. Mao, S. Zhang, Y. Wang, X. Gan, W. Zhang, T. Mei, Y. Wang, Y. Wang, H. Zeng, J. Zhao Opt. Express 23 27509 (2015)

    Article  ADS  Google Scholar 

  16. M Liu, X Yin, E Ulin-Avila, B Geng, T Zentgraf, L Ju, F Wang, X Zhang Nature 474 64 (2011)

    Article  ADS  Google Scholar 

  17. Q Bao, H Zhang, Y Wang, Z Ni, Y Yan, Z X Shen, K P Loh, D Y Tang Adv. Funct. Mater. 19 3077 (2009)

    Article  Google Scholar 

  18. H Lu, D Mao, C Zeng, F Xiao, D Yang, T Mei, J Zhao Opt. Mat. Express 8 1058 (2018)

    Article  ADS  Google Scholar 

  19. H Lu, X Gan, B Jia, D Mao, J Zhao Opt. Lett. 41 4743 (2016)

    Article  ADS  Google Scholar 

  20. X Wang, G Sun, P Routh, D H Kim, W Huang, P Chen Chem. Soc. Rev. 43 7067 (2014)

    Article  Google Scholar 

  21. W D Tan, C Y Su, R J Knize, G Q Xie, L J Li, D Y Tang Appl. Phys. Lett. 96 031106 (2010)

    Article  ADS  Google Scholar 

  22. A S L Gomes, M T Carvalho, M L Sundheimer, C J A Bastos-Filho, J F Martins-Filho, M B C e Silva, J P Von der Weid, W Margulis IEEE Photon. Technol. Lett. 15 200 (2003)

    Article  ADS  Google Scholar 

  23. T Kasamatsu, Y Yano, H Sekita Opt. Lett. 24 1684 (1999)

    Article  ADS  Google Scholar 

  24. K Langhans, C Guill, E Rieper, K Oltmann, D Bahr, Electronic Imaging 2003, International Society for Optics and Photonics 2003, pp. 161–174

    Google Scholar 

  25. Z Xing, Z Ju, Y Zhao, J Wan, Y Zhu, Y Qiang, Y Qian Sci. Rep. 6 (2016)

  26. H M Jeong, J W Lee, W H Shin, Y J Choi, H J Shin, J K Kang, J W Choi Nano Lett. 11 2472 (2011)

    Article  ADS  Google Scholar 

  27. L Ren, K N Hui, K S Hui, Y Liu, X Qi, J Zhong, Y Du, J Yang Sci. Rep. 5 14229 (2015)

    Article  ADS  Google Scholar 

  28. H Ahmad, S Aidit, S Ooi, M Rezayi, Z Tiu Laser Phys. 27 105302 (2017)

    Article  ADS  Google Scholar 

  29. D Mao, T Feng, W Zhang, H Lu, Y Jiang, P Li, B Jiang, Z Sun, J Zhao Appl. Phys. Lett. 110 021107 (2017)

    Article  ADS  Google Scholar 

  30. C Floridia, M Carvalho, S Lüthi, A Gomes Opt. Lett. 29 1983 (2004)

    Article  ADS  Google Scholar 

  31. P Dupriez, A Piper, A Malinowski, J K Sahu, M Ibsen, B C Thomsen, Y Jeong, L M B Hickey, M N Zervas, J Nilsson IEEE Photon. Technol. Lett. 18 1013 (2006)

    Article  ADS  Google Scholar 

  32. D J Jones, S A Diddams, J K Ranka, A Stentz, R S Windeler, J L Hall, S T Cundiff Science 288 635 (2000)

    Google Scholar 

  33. H Ahmad, M A Ismail, S Sathiyan, S A Reduan, N E Ruslan, C S J Lee, M. Zulkifli, K Thambiratnam, M F Ismail, S W Harun Opt. Commun. 382 93 (2017)

    Article  ADS  Google Scholar 

  34. H Ahmad, M A Ismail, M Suthaskumar, Z C Tiu, S W Harun, M Z Zulkifli, S Samikannu, S Sivaraj Laser Phys. Lett., 13 035103 (2016)

    Article  ADS  Google Scholar 

  35. F D Muhammad, M Z Zulkifli, H Ahmad J. Nonlinear Opt. Phys. Mater. 23 1450004 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Ministry of Higher Education, (MOHE) Malaysia for funding this research under the grants HiCoE Phase II Funding as well as the University of Malaya for funding this research under the grant RU 011-2019.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Yasin or K. Thambiratnam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, H., Ooi, S.I., Tiu, Z.C. et al. Passively Q-switched thulium fluoride fiber laser operating in S-band region using N-doped graphene saturable absorber. Indian J Phys 95, 1837–1842 (2021). https://doi.org/10.1007/s12648-020-01815-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01815-2

Keywords

Navigation