Skip to main content
Log in

The combined influences for solar-geomagnetic activities and the atmospheric circulation NAO on global surface temperatures

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

This work aims to investigate the effect of solar-geomagnetic activities on atmospheric circulation and to examine their influences on global surface temperature (GST). Used data are the sunspot number (Rz) as a solar activity index, geomagnetic activity index (aa), the North Atlantic Oscillation index (NAO), and GST. We have performed an extensive analysis by using the wavelet power spectra (WPS) and global wavelet spectra (GWS). Results from WPS showed that both NAO and GST exhibited periodicities of ~ 22 years and 11 years, indicating the imprint of solar activity on both parameters. Additionally, the WPS of NAO exhibited three dominant modes; firstly, periodicity of 2 to 4 years appeared in the time intervals: (1954–1967), (1987–1997), and (2007–2015), possibly related to El-Nino Southern Oscillation. Secondly, sporadic oscillation of 1 to 2.5 years observed during the whole period, which corresponding to quasi-biennial oscillation. Finally, oscillatory modes with high power on the band 7 to 8.5 years are observed on NAO spectrum: 7.6 years for the period (1872–1892) and 8.3 years for 1996–2005. This oscillatory mode with enhanced power in the 8.3 years has been detected significantly on the GWS of GST, indicating the influence of climatic pattern on GST. Our results showed that the solar-geomagnetic activities influence partially and indirectly on GST through atmospheric circulation pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A L Morozova and T V. Barlyaeva J. Atmos. Solar-Terrestrial Phys. 149 240 (2016).

    Article  ADS  Google Scholar 

  2. E W Cliver, V Boriakoff, and J Feynman Geophys. Res. Lett. 25 1035 (2000).

    Article  ADS  Google Scholar 

  3. P C Vieira and M J A Bolzan Brazilian J. Phys. 36 1217 (2006).

    Article  ADS  Google Scholar 

  4. V Bucha Phys. Chem. Earth 27 427 (2002).

    Article  ADS  Google Scholar 

  5. L J Gray, J Beer, M Geller, J D Haigh, M Lockwood, K Matthes, U Cubasch, D Fleitmann, G Harrison, L Hood, J Luterbacher, G A Meehl, D Shindell, B van Geel, and W White Rev. Geophys. 48 RG4001 (2010).

    Article  ADS  Google Scholar 

  6. C Okonkwo Int. J. Atmos. Sci. 2014 1 (2014).

    Google Scholar 

  7. Z Zamrane, N-E Laftouhi, G Mahe, and B Laignel J. Environ. Earth Sci. 6 34 (2016).

    Google Scholar 

  8. B Saghafian, A Haghnegahdar, and M Dehghani Hydrol. Sci. J. 62 1039 (2017).

    Article  Google Scholar 

  9. C Deser, J W Hurrell, and A S Phillips Clim. Dyn. 49 3141 (2017).

    Article  Google Scholar 

  10. A Lehmann, K Getzlaff, and J Harlaß Clim. Res. 46 185 (2011).

    Article  Google Scholar 

  11. S Jemai, M Ellouze, and H Abida Atmosphere (Basel) 8 178 (2017).

    Article  Google Scholar 

  12. L Hermida, L López, A Merino, C Berthet, E García-Ortega, J L Sánchez, and J Dessens Atmos. Res. 156 174 (2015).

    Article  Google Scholar 

  13. K Kudela and I Sabbah Sci. China Technol. Sci. 59 547 (2016).

    Article  ADS  Google Scholar 

  14. G Bazilevskaya, A-M Broomhall, Y Elsworth, and V M Nakariakov Space Sci. Rev. 186 359 (2014).

    Article  ADS  Google Scholar 

  15. Y P Singh and Badruddin Planet. Space Sci. 138 1 (2017).

  16. M A El-Borie, A A Thabet, E S El-Mallah, M Abd El-Zaher, and A A Bishara Indian J. Phys. (2019).

  17. M A El-Borie, E Shafik, A A Abdel-Halim, and S Y El-Monier J. Environ. Prot. (Irvine,. Calif). 01 111 (2010).

    Article  Google Scholar 

  18. N O Francisca and O A Moses Int. J. Phys. Sci. 12 184 (2017).

    Article  Google Scholar 

  19. H Van Loon and G A Meehl Geophys. Res. Lett. 39 1 (2012).

    Google Scholar 

  20. A A Scaife, S Ineson, J R Knight, L Gray, K Kodera, and D M Smith Geophys. Res. Lett. 40 434 (2013).

    Article  ADS  Google Scholar 

  21. L Hood, S Schimanke, T Spangehl, S Bal, and U Cubasch J. Clim. 26 7489 (2013).

    Article  ADS  Google Scholar 

  22. D Labat J. Hydrol. 385 269 (2010).

    Article  ADS  Google Scholar 

  23. S Hajian and M S Movahed Phys. A Stat. Mech. Its Appl. 389 4942 (2010).

    Article  ADS  Google Scholar 

  24. R Narasimha and S Bhattacharyya Appl. Comput. Harmon. Anal. 28 285 (2010).

    Article  MathSciNet  Google Scholar 

  25. C Fu, A L James, and M P Wachowiak Water Resour. Res. 48 (2012).

  26. S L Sunkara and R K Tiwari Nonlinear Process. Geophys. 23 361 (2016).

    Article  ADS  Google Scholar 

  27. P D Jones, T Jonsson, and D Wheeler Int. J. Climatol. 17 1433 (1997).

    Article  Google Scholar 

  28. I I Ippolitov Russ. Phys. J. 45 1086 (2002).

    Article  Google Scholar 

  29. A Grossmann and J Morlet SIAM J. Math. Anal. 15 723 (1984).

    Article  MathSciNet  Google Scholar 

  30. C Torrence and G P Compo Bull. Am. Meteorol. Soc. 79 61 (1998).

    Article  ADS  Google Scholar 

  31. M Farge Annu. Rev. Fluid Mech. 24 395 (1992).

    Article  ADS  Google Scholar 

  32. S R Prabhakaran Nayar, V N Radhika, K Revathy, and V Ramadas Sol. Phys. 208 359 (2002).

    Article  ADS  Google Scholar 

  33. Y P Singh and Badruddin Planet. Space Sci. 96 120 (2014).

  34. D P Percival Biometrika 82 619 (1995).

    Article  MathSciNet  Google Scholar 

  35. T S Kestin, D J Karoly, J-I Yano, and N A Rayner J. Clim. 11 2258 (1998).

    Article  ADS  Google Scholar 

  36. M Raspopov, O M Shumilov, O I Kasatkina, E A Turunen, E Lindholm 35-year Climatic Bruckner Cycle - Solar Control of Climate Variability? (ed) A. Wilson. Noordwijk, (Santa Cruz de Tenerife, Tenerife, Spain: European Space Agency) p 517 (2000).

  37. M A El-Borie Sol. Phys. 208 345 (2002).

    Article  ADS  Google Scholar 

  38. C Katsavrias, P Preka-Papadema, and X Moussas Sol. Phys. 280 623 (2012).

    Article  ADS  Google Scholar 

  39. M A El-Borie, A M El-Taher, A A Thabet, and A A Bishara Astrophys. J. 880 86 (2019).

    Article  ADS  Google Scholar 

  40. B Kirov, S Asenovski, K Georgieva, V N Obridko, and G Maris-Muntean J. Atmos. Solar-Terrestrial Phys. 176 42 (2018).

    Article  ADS  Google Scholar 

  41. E S Elmallah and S G Elsharkawy J. Atmos. Solar-Terrestrial Phys. 73 439 (2011).

    Article  ADS  Google Scholar 

  42. M Paluš and D Novotná J. Atmos. Solar-Terrestrial Phys. 71 923 (2009).

    Article  ADS  Google Scholar 

  43. P H Rampelotto, N R Rigozo, M B da Rosa, A Prestes, E Frigo, M P Souza Echer, and D J R Nordemann J. Atmos. Solar-Terrestrial Phys. 77 152 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the National Geophysical Data Center (NGDC), Sunspot Index and Long-term Solar Observations (SILSO), Climatic Research Unit (CRU), and Carbon Dioxide Information Analysis Center (CDIAC) for providing the data used in this study. Also, we are thankful to C. Torrence and G. Compo for providing the wavelet software package. Finally, we thank the referee for valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Thabet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Borie, M.A., Thabet, A.A., El-Mallah, E.S. et al. The combined influences for solar-geomagnetic activities and the atmospheric circulation NAO on global surface temperatures. Indian J Phys 95, 1041–1049 (2021). https://doi.org/10.1007/s12648-020-01757-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01757-9

Keywords

PACS Nos

Navigation