Skip to main content
Log in

The relation of entanglement to the number of qubits and interactions between them for different graph states

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We quantify the entanglement and its variations via generalized concurrence, Meyer–Wallach measure and its generalizations. Then we investigate the interactions between qubits on complete graphs, tree graphs, chain graphs and loop graphs with 3 to 8 qubits. It is observed that the amount of all entanglement measures in tree graph in the first group of considered graphs, are equal. The complete equivalent graph is equal and the entanglement measures for these graphs change altering the number of qubits. Furthermore, it can be seen that the entanglement measures are increased augmenting the number of qubits in the chain graph and loop graph. The entanglement of loop graphs is equal to or greater than the entanglement of chain graphs assuming the same number of qubits. Also there is a significant relation between entanglement, number of qubits, and interactions between qubits for the second group of considered graphs. As the number of interactions (presented by edges) increases between the qubits, the entanglements increase in these states. It is shown that the employed entanglement measures reveal the different values changing the number of qubits (vertices).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M Hein, W Dür, J Eisert, R Raussendorf, M Nest and H J Briegel arxiv preprint quant-ph/0602096 (2006)

  2. D McMahon Quantum Computing Explained (John Wiley & Sons) (2007)

  3. D B West Introduction to Graph Theory (Upper Saddle River: Prentice Hall) (2001)

    Google Scholar 

  4. M Hein, J Eisert and H J Briegel Phys. Rev. A 69 062311 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  5. S Beigi, I Chuang, M Grassl, P Shor and B Zeng J. Math. Phys. 52 (2) 022201 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  6. D Schlingemann and R F Werner Phys. Rev. A 65 012308 (2001)

    Article  ADS  Google Scholar 

  7. L Da-Chuang and C Zhuo-Liang Commun. Theor. Phys. 47 464 (2007)

    Article  ADS  Google Scholar 

  8. L Ren, G He and G Zeng Phys. Rev. A 78 042302 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  9. R Raussendorf and H J Briegel Phys. Rev. Lett. 86 5188 (2001)

    Article  ADS  Google Scholar 

  10. P Walther, K J Resch, T Rudolph, E Schenck, H Weinfurter, V Vedral, M Aspelmeyer and A Zeilinger Nature 434 169–176 (2005)

    Article  ADS  Google Scholar 

  11. M A Nielsen Rep. Math. Phys. 57(1) 147–161 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  12. M A Nielsen Phys. Rev. Lett. 93 040503 (2004)

    Article  ADS  Google Scholar 

  13. M Varnava, D E Browne and T Rudolph Phys. Rev. Lett. 97 120501 (2006)

    Article  ADS  Google Scholar 

  14. M Jafarpour and L Assadi Eur. Phys. J. D 70 62 (2016)

    Article  ADS  Google Scholar 

  15. M Alimoradi Chamgordani, N Naderi, H Koppelaar and M Bordbar Int. J. Mod. Phys. B 33(17) 1950180 (2019)

    Article  Google Scholar 

  16. X Chen J. Phys. B: At. Mol. Opt. Phys. 43(8) 085507 (2010)

    Article  ADS  Google Scholar 

  17. Y Xing-Can et al Nat. Photonics 6(4) 225–228 (2012)

    Article  ADS  Google Scholar 

  18. M Van den Nest, J Dehaene and B De Moor Phys. Rev. A 69(2) 022316 (2004)

    Article  ADS  Google Scholar 

  19. Y Wang, Y Shang and P Xue Quantum Inf. Process. 16 221 (2017)

    Article  ADS  Google Scholar 

  20. M Alimoradi Chamgordani and H Koppelaar Int. J. Innov. Res. Sci. Eng. Technol. 7(4) 2319–8753 (2018)

    Google Scholar 

  21. Y-G Yang et al. Mod. Phys. Lett. B 33(6) 1950070 (2019)

    Article  ADS  Google Scholar 

  22. M Hein, W Dür, J Eisert, R Raussendorf, M V den Nest and H J Briegel arXiv:quant-ph/0602096

  23. R Raussendorf, D E Browne and H J Briegel Phys. Rev. A 68 022312 (2003)

    Article  Google Scholar 

  24. D L Zhou, B Zeng, Z Xu and C P Sun Phys. Rev. A 68 062303 (2003)

    Article  ADS  Google Scholar 

  25. M Alimoradi Chamgordani and H Koppelaar Int. J. Innov. Res. Sci. Eng. Technol. 7(2) 0702055 (2018)

    Google Scholar 

  26. D Markham and A Krause arXiv:1801.05057 (2018)

  27. C Meignant, D Markham and F Grosshans arXiv:1811.05445v3 (2019)

  28. S Gravier, J Javelle, M Mhalla and S Perdrix International Doctoral Workshop on Mathematical and Engineering Methods in Computer Science MEMICS 2012: Mathematical and Engineering Methods in Computer Science Lecture Notes in Computer Science 7721 pp 15–31 (2013)

  29. D Markham and B C Sanders Phys. Rev. A 83(1) 019901(2011)

    Article  ADS  Google Scholar 

  30. A Borras, A Plastino, J Batle, C Zander, M Casas and A Plastino J. Phys. A Math. Theor. 40 13407 (2007)

    Article  ADS  Google Scholar 

  31. P J Love, A M vanden Brink, A Y Smirnov, M Amin, M Grajcar, E Il’ichev, A Izmalkov and A Zagoskin Quantum Inf. Process. 6 187–195 (2007)

    Article  MathSciNet  Google Scholar 

  32. S Hill and W K Wootters Phys. Rev. Lett. 78 5022 (1997)

    Article  ADS  Google Scholar 

  33. A R R Carvalho, F Mintert and A Buchleitner Phys. Rev. Lett. 93 230501 (2004)

    Article  ADS  Google Scholar 

  34. F Mintert, M Kus and A Buchleitner Phys. Rev. Lett. 95 260502 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  35. X N Zhu and S M Fei Quantum Inf. Process. 13 815 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  36. G Xiuhong, A Sergio, K Chen, Sh Fei and X Li-Jost Front. Comput. Sci. China 2(2) 114–128 (2008)

    Article  Google Scholar 

  37. P-Y Chang, S-K Chu and C-T Ma J. High Energy Phys. 100 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Negar Naderi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bordbar, M., Naderi, N. & Alimoradi Chamgordani, M. The relation of entanglement to the number of qubits and interactions between them for different graph states. Indian J Phys 95, 901–909 (2021). https://doi.org/10.1007/s12648-020-01755-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01755-x

Keywords

PACS Nos.

Navigation