Skip to main content
Log in

Photodetachment dynamics of negative ion confined in a time-dependent quantum well

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We investigate the photodetachment dynamics of negative ion confined in a time-dependent trap created by a quantum well with an oscillating wall for the first time. Compared with the photodetachment of negative ion in a quantum well with static walls, the movement of the detached electron becomes substantially complicated and interesting as one wall in the quantum well oscillates with time. The position–time plot of the detached electron in the quantum well shows a fractal structure of asymptotic self-similarity due to the influence of the oscillating wall. The returning kinetic energy of the detached electron may have been accelerated to high energy by colliding with the oscillating wall. By calculating the photodetachment cross section of this system, we find that the oscillating wall in the quantum well functions as an external driving potential for the photodetachment of negative ion. The photodetachment cross section becomes increasingly complicated due to the influence of the oscillating wall. In addition, the amplitude, initial phase, and the initial position of the oscillating wall all affect the photodetachment cross section of this system. Our study may guide future experimental investigations on the photodetachment dynamics in the ion trap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y N Demkov, V D Kondratovich and V NOstrovskii JETP Lett. 34 403 (1981)

    ADS  Google Scholar 

  2. I I Fabrikant Sov. Phys. JETP 56 967 (1982)

    Google Scholar 

  3. H R Reiss Phys. Rev. A 22 1786 (1980)

    Article  ADS  Google Scholar 

  4. N D Gibson, B J Davies and D J Larson Phys. Rev. A 47 1946 (1993)

    Article  ADS  Google Scholar 

  5. N D Gibson, B J Davies and D J Larson Phys. Rev. A 64 061403(R) (2001)

    Article  ADS  Google Scholar 

  6. J Hu, K L Han and G Z He Phys. Rev. Lett. 95 123001 (2005)

    Article  ADS  Google Scholar 

  7. H C Bryant, A Mohagheghi, J E Stewart, J B Donahue, C R Quick and R A Reeder et al. Phys. Rev. Lett. 58 2412 (1987)

    Article  ADS  Google Scholar 

  8. A R P Rau and H Y Wong Phys. Rev. A 37 632 (1988)

    Article  ADS  Google Scholar 

  9. M L Du and J B Delos Phys. Rev. A 38 5609 (1988)

    Article  ADS  Google Scholar 

  10. M L Du and J B Delos Phys. Rev. A 38 1896 (1988); M L Du Phys. Rev. A 70 055402 (2004)

  11. G C Yang, Y Z Zheng and X X Chi J. Phys. B 39 1855 (2006)

    Article  ADS  Google Scholar 

  12. G C Yang, Y Z Zheng and X X Chi J. Theor. Comput. Chem. 6 353 (2007)

    Article  Google Scholar 

  13. G C Yang, K K Rui and Y Z Zheng Physica B Condens.Matter 404 1576 (2009)

    Article  ADS  Google Scholar 

  14. H J Zhao, Z J Ma and M L Du Physica B Condens. Matter 466 54 (2015)

    Article  ADS  Google Scholar 

  15. KY Huang and D H Wang J. Phys. Chem. C 114 8958 (2010)

    Article  Google Scholar 

  16. H J Zhao and M L Du Phys. Rev. E 84 016217 (2011)

    Article  ADS  Google Scholar 

  17. T T Tang and D H Wang J. Phys. Chem. C 115 20529 (2011)

    Article  Google Scholar 

  18. D H Wang, S S Li, Y H Wang and H F Mu J. Phys. Soc. Jpn. 81 114301 (2012)

    Article  ADS  Google Scholar 

  19. H J Zhao and M L Du Phys. B Condens. Matter 530 121 (2018)

    Article  ADS  Google Scholar 

  20. D H Wang Phys. Rev. A 98 053419 (2018)

    Article  ADS  Google Scholar 

  21. E Fermi Phys. Rev. 75 1169 (1949)

    Article  ADS  Google Scholar 

  22. S M Ulam Proc. 4th Berkeley Symposium on Mathematical Statistics and Probability (Berkeley: University of California Press) 3 p 315 (1961)

  23. P Seba Phys. Rev. A 41 2306 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  24. M L Glasser, J Mateo, J Negro, and L M Nieto Chaos, Solitons Fractals 41 2067 (2009)

    Article  ADS  Google Scholar 

  25. S Carrasco, J Rogan and J A Valdivia Sci. Rep. 7 13217 (2017)

    Article  ADS  Google Scholar 

  26. V V Dodonov, A B Klimov and D E Nikonnov J. Math. Phys. 34 3391 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  27. S D Martino, F Anza, and P Facchi J. Phys. A Math. Theor. 46 365301 (2013)

    Article  Google Scholar 

  28. S T Dembinski, A J Makowski and P Peplowski Phys. Rev. Lett. 70 1093 (1993)

    Article  ADS  Google Scholar 

  29. E D Leonel and P V E McClintock J. Phys. A Math. Gen. 38 823 (2005)

    Article  ADS  Google Scholar 

  30. H J Zhao and M L Du Phys. Rev. A 76 017401 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2019MA066), National Natural Science Foundation of China (Grant No. 11374133), and Taishan Scholars Project of Shandong Province (Grant No. ts2015110055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Hua Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, T., Wang, DH. & Sun, XY. Photodetachment dynamics of negative ion confined in a time-dependent quantum well. Indian J Phys 95, 551–560 (2021). https://doi.org/10.1007/s12648-020-01721-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01721-7

Keywords

PACS Nos.

Navigation