Skip to main content
Log in

Thermal shock problem in porous orthotropic medium with three-phase-lag model

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The present article deals with the thermal shock response in homogeneous orthotropic medium under the purview of three-phase-lag model in the presence of voids. The normal mode analysis is used to obtain a vector matrix differential equation which is then solved by eigenvalue approach. In order to illustrate the analytical developments, the numerical solution is carried out and the results for stress, displacement and temperature are presented graphically. Comparison of stress, displacement and temperature for different thermoelastic models such as Lord–Shulman (LS) and Green–Naghdi-III (GN-III) is observed, and it is noticed that the value of all parameters is maximum for the LS model and minimum for the GN-III model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J W Nunziato and S C Cowin Arch. Ration. Mech. Anal. 72 175 (1979)

    Article  Google Scholar 

  2. S C Cowin and J W Nunziato J. Elast. 13 125 (1983)

    Article  Google Scholar 

  3. D Iesan Acta Mech. 60 67 (1986)

    Article  Google Scholar 

  4. D Iesan An. St. Univ. Iasi Mati 33 167 (1987)

    Google Scholar 

  5. M Ciarletta and E Scarpetta Riv. Mat. Univ. Parma 16 183 (1990)

    MathSciNet  Google Scholar 

  6. H W Lord and Y Shulman J. Mech. Phys. Solid 15 299 (1967)

    Article  ADS  Google Scholar 

  7. A E Green and K A Lindsay J. Elast. 2 1 (1972)

    Article  Google Scholar 

  8. A E Green and P M Naghdi Proc. R. Soc. Lond. Ser. A 432 171 (1991)

    Article  ADS  Google Scholar 

  9. A E Green and P M Naghdi J. Therm. Stress 15 252 (1992)

    Article  ADS  Google Scholar 

  10. A E Green and P M Naghdi J. Elast. 31 189 (1993)

    Article  Google Scholar 

  11. D S Chandrasekharaih Appl. Mech. Rev. 39 355 (1986)

    Article  ADS  Google Scholar 

  12. D S Chandrasekharaih Appl. Mech. Rev. 51 705 (1998)

    Article  ADS  Google Scholar 

  13. D Y Tzou ASME J. Heat Transf. 117 8 (1995)

    Article  Google Scholar 

  14. S K Roychoudhuri J. Therm. Stress. 30 231 (2007)

    Article  Google Scholar 

  15. A Baksi, R K Bera and L Debnath Int. J. Eng. Sci. 43 1419 (2005)

    Article  Google Scholar 

  16. S M Said J. Comput. Appl. Math. 291 142 (2016)

    Article  MathSciNet  Google Scholar 

  17. M I A Othman, W M Hasona and N T Mansour Multidiscip. Model. Mater. Struct. 11 544 (2015)

    Article  Google Scholar 

  18. K K Kalkal and S Deswal Int. J. Thermophys. 35 952 (2014)

    Article  ADS  Google Scholar 

  19. A S El-Karamany and M A Ezzat Eur. J. Mech. A Solids 40 198 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  20. M I A Othman and S M Said Meccanica 49 1225 (2014)

    Article  MathSciNet  Google Scholar 

  21. S Biswas, B Mukhopadhyay and S Shaw J. Therm. Stress. 40 403 (2017)

    Article  Google Scholar 

  22. S M Abo-Dahab and S Biswas J. Electromag. Waves Appl. 31 1485 (2017).

    Article  Google Scholar 

  23. S Biswas and B Mukhopadhyay J. Therm. Stress. 41 366 (2018)

    Article  Google Scholar 

  24. S I El-Attar, M H Hendy and M A Ezzat Mech. Based Des. Struct. Mach. 86 102427 (2019)

    Google Scholar 

  25. A S El-Karamany and M A Ezzat J. Therm. Stress. 40 1063 (2017).

    Article  Google Scholar 

  26. M A Ezzat and A A El-Bary Microys Tech 24 4965 (2018)

    Article  Google Scholar 

  27. M A Ezzat and A A El-Bary Waves Random Complex Media 28 150 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  28. M A Ezzat and A A El-Bary Steel Compos. Struct. 24 297(2017)

    Google Scholar 

  29. A S El-Karamany and M A Ezzat 46 5643 (2014)

    Article  MathSciNet  Google Scholar 

  30. A S El-Karamany and M A Ezzat Appl. Math. Model. 46 5643 (2014)

    Google Scholar 

  31. M A Ezzat, A A El-Bary and M A Fayik Mech. Adv. Mater. Struct. 20 593 (2013)

    Article  Google Scholar 

  32. N C Das, A Lahiri and R R Giri Indian J. Pure Appl. Math. 28 1573 (1997)

    MathSciNet  Google Scholar 

  33. R Quintanilla and R Racke Int. J. Heat Mass Transf. 51 24 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

Research work of the author is financially supported by University Project Research Grant (Ref No. 1947/R-2019) of University of North Bengal, Darjeeling, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddhartha Biswas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, S. Thermal shock problem in porous orthotropic medium with three-phase-lag model. Indian J Phys 95, 289–298 (2021). https://doi.org/10.1007/s12648-020-01703-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01703-9

Keywords

PACS Nos.

Navigation