Skip to main content
Log in

Relaxation and condensation kinetics of trapped excitons at ultra-low temperatures: numerical simulation

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

This work is a theoretical study of the excitons relaxation dynamics in cuprous oxide at ultra-low temperatures and within a potential trap. Exciton–phonon collisions and exciton–exciton collisions have been included as relaxation processes. Special attention is given to the thermal distribution, cooling process and the condensation of the exciton gas with high number of excitons. It has been done by solving the Boltzmann equation numerically, using MATLAB. In this work, the relaxation behaviour has been analysed for the temperatures between 0.1 and 3 K. It has been found that for the temperatures above 0.1 K the local effective temperatures are coming down to the bath temperatures, i.e. the excitons reach the local equilibrium with the lattice, but for 0.1 K it does not happen. For 3 K, the global distributions do not change at all with time, but for 0.1 K this change is significant. Maybe this thermal loss of excitons for 0.1 K is related to the Bose–Einstein condensation of excitons. Interestingly, for the temperature of 0.1 K the condensate has been formed with sufficiently high number of excitons, for the times larger than 300 ns. Also, the results have been compared with the other theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J M Blatt, K W Boer and W Brandt Phys. Rev. 126 1691 (1962)

    Article  ADS  Google Scholar 

  2. S A Moskalenko, Fiz. Tverd. Tela (Leningrad) 4 276 (1962)

    ADS  Google Scholar 

  3. S. A. Moskalenko Sov. Phys. Solid State 4 199 (1962).

    Google Scholar 

  4. A Griffin, D W Snoke and S Stringari Bose Einstein Condensation, Chapters 13 and 14 (Cambridge: Cambridge University Press) (1995)

  5. D W Snoke Science 298 1368 (2002).

    Article  ADS  Google Scholar 

  6. J B Grun, M Seiskind and S Nikitine J. Phys. Chem. Solids 19 189 (1961)

    Article  ADS  Google Scholar 

  7. C J Pethick and H Smith Bose-Einstein Condensation in Dilute Gases (Cambridge: Cambridge University Press) (2002)

    Google Scholar 

  8. J Brandt, D Frohlich, C Sandfort, M Bayer, H Stolz and N Naka Phys. Rev. Lett. 99 217403 (2007)

    Article  ADS  Google Scholar 

  9. D Snoke and G M Kavoulakis Rep. Prog. Phys. 77 116501 (2014)

    Article  ADS  Google Scholar 

  10. C Ell, A L Ivanov and H Haug Phys. Rev. B 57 9663 (1998)

    Article  ADS  Google Scholar 

  11. A L Ivanov, C Ell and H Haug Phys. Rev. E 55 6363 (1997)

    Article  ADS  Google Scholar 

  12. A L Ivanov, Ell C and Haug H Physica Status Solidi B 206 235 (1998)

    Article  ADS  Google Scholar 

  13. G M Kavoulakis, G Baym, and J P Wolfe Phys. Rev. B 53 7227 (1996)

    Article  ADS  Google Scholar 

  14. D W Snoke, D Braun and M Cardona Phys. Rev. B 44 2991 (1991)

    Article  ADS  Google Scholar 

  15. D W Snoke and J P Wolfe Phys. Rev. B 39 4030 (1989)

    Article  ADS  Google Scholar 

  16. D W Snoke, W W Ruhle, Y C Lu, and E Bauser Phys Rev B 45 10979 (1992)

    Article  ADS  Google Scholar 

  17. K E O’Hara and J P Wolfe Phys. Rev. B 62 12909 (2000)

    Article  ADS  Google Scholar 

  18. K E O’Hara Ph.D. Thesis (University of Illinois, Urbana, Illinois, USA) (1999)

  19. L V Butov, A C Gossard, and D S Chemla Nature 418 751 (2002)

  20. N Naka and N Nagasawa J. Lumin. 112 11 (2005)

    Article  Google Scholar 

  21. D Snoke, S Denev, Y Liu, L Pfeiffer, and K West Nature 418 754 (2002)

    Article  ADS  Google Scholar 

  22. H Deng, G Weihs, C Santori, J Bloch, and Y Yamamoto Science 298 199 (2002)

    Article  ADS  Google Scholar 

  23. J Kasprzak, M Richard, S Kundermann, A Baas, P Jeambrun, J M J Keeling, M F Marchetti, H M Szymańska, R André, L J Staehli, V Savona, B P Littlewood, B Deveaud and Le Si Dang Nature 443 409 (2006)

    Article  ADS  Google Scholar 

  24. R Balili, V Hartwell, D Snoke, L Pfeiffer, and K West Science 316 1007 (2007)

    Article  ADS  Google Scholar 

  25. K Yoshioka, E Chae and M Kuwata-Gonokami Nat. Commun. 2 328 (2011)

    Article  ADS  Google Scholar 

  26. R Schwartz, N Naka, F Kieseling and H Stolz N. J. Phys. 14 023054 (2012)

    Article  Google Scholar 

  27. H Stolz, R Schwartz, F Kieseling, S Som, M Kaupsch, S Sobkowiak, D Semkat, N Naka, Th Koch, and H Fehske N. J. Phys. 14 105007 (2012)

    Article  Google Scholar 

  28. K Yoshioka, Y Morita, K Fukuoka, and M Kuwata-Gonokami Phys. Rev. B 88 041201 (2013)

    Article  ADS  Google Scholar 

  29. M Alloing, M Beian, M Lewenstein, D Fuster, Y Gonz´alez, L Gonz´alez, R Combescot, M Combescot and F Dubin EuroPhys. Lett. 107 10012 (2014)

    Article  ADS  Google Scholar 

  30. M Beian, M Alloing, R Anankine, E Cambril, C G Carbonell, A Lemaitre and F Dubin EuroPhys. Lett. 119 37004 (2017)

    Article  ADS  Google Scholar 

  31. M Combescot, R Combescot and F Dubin Rep. Prog. Phys. 80 066501 (2017)

    Article  ADS  Google Scholar 

  32. S Som, F Kieseling and H Stolz J. Phys. Condens. Matter 24 335803 (2012)

    Article  Google Scholar 

  33. N W Ashcroft and N D Mermin Solid State Physics (Fortworth: Harcourt Brace) (1976)

    MATH  Google Scholar 

  34. E William Schiesser and W G Graham A Compendium of Partial Differential Equation Models (Cambridge: Cambridge University Press) (2009)

  35. L P Kadanoff and G Baym Quantum Statistical Mechanics (Boston: Addison-Wesley Publishing Company) (1989)

  36. D V Semikoz and I I Tkachev Phys. Rev. Lett 74 3093 (1995)

    Article  ADS  Google Scholar 

  37. Sobkowiak, D Semkat and H Stolz Phys. Rev. B 91 075209 (2015)

Download references

Acknowledgements

I would like to thank Prof. Heinrich Stolz and Dr. Frank Kieseling, University of Rostock (Germany), for their useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunipa Som.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Som, S. Relaxation and condensation kinetics of trapped excitons at ultra-low temperatures: numerical simulation. Indian J Phys 94, 1603–1613 (2020). https://doi.org/10.1007/s12648-019-01592-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01592-7

Keywords

PACS No.

Navigation