Skip to main content

Advertisement

Log in

Experimental and theoretical analyses on structural (monomer and dimeric form), spectroscopic and electronic properties of an organic semiconductor 2,6-dimethoxyanthracene

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this work, a promising organic semiconductor 2,6-dimethoxyanthracene (2,6-DA) molecule was widely characterized experimentally through FTIR in the region of 4000–450 cm−1 and FT Raman in the region of 4000–50 cm−1, respectively. Theoretical calculations were performed by employing Gaussian 09 software using DFT/B3LYP/6-311++G(d,p) method. The barrier potential energy due to internal rotation optimized the structural parameters and vibrational harmonic frequencies. MOLVIB program was used to scale the theoretical frequencies for a better fit with the experimental frequencies; the rms error of 9.4 cm−1 was obtained between the observed and scaled frequencies. Geometric optimization was made for dimer in order to lend theoretical support for the existence of hydrogen bond in 2,6-DA at the same level of theory as used for the monomer. First-order hyperpolarizability, natural bond orbital analysis, molecular electrostatic surface potential and Fukui functions were calculated. Electronic properties like HOMO–LUMO energies, regeneration energy (ΔGreg), electronic injection energy (ΔGinject), light-harvesting efficiency were performed in gas phase and in different solvents to determine the shift of higher absorption wavelength, employing time-dependent density functional theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R J Bushby, S M Kelly and M O Neill Liquid Crystalline Semiconductors (Dordrecht: Springer) (2013)

    Google Scholar 

  2. M Saleem, M Rafiq and M Hanif J. Fluoresc.27 31 (2017)

    Google Scholar 

  3. Y Jiao, B Zhu, J Chen and X Duan Theranostics5 173 (2015)

    Google Scholar 

  4. Y. Jeong and J Yoon Inorg. Chim. Acta381 2 (2012)

    Google Scholar 

  5. B Angelov, A Angelova and R Ionov J. Phys. Chem. B 104 9140 (2000)

    Google Scholar 

  6. A P de Silva, H Gunaratne, T Gunnlaugsson and P. Lynch New J. Chem.20 871 (1996)

    Google Scholar 

  7. G R Martinez, F Garcia, L H Catalani, J Cadet, M C B Oliveira, G E Ronsein, S Miyamoto, M H Medeirosd and P Di Mascio Tetrahedron62 10762 (2006)

    Google Scholar 

  8. L Yang, Y Liu, X Zhou, Y Wu, C Ma, W Liu and C Zhang Dyes Pigm.126 232 (2016)

    Google Scholar 

  9. H Moon, Y W Jun, D Kim, H G Ryu, T Wang, K H Kim, Y Huh, J Jung and K H Ahn Chem. Asian J.11 2518 (2016)

    Google Scholar 

  10. F A Tanious, T C Jenkins, S Neidle and W D Wilson Biochem. J.31 11632 (1992).

    Google Scholar 

  11. S A de Silva, A Zavaleta, D E Baron, O Allam, E V Isidor, N Kashimura and J M Percarpio Tetrahedron Lett.38 2237 (1997)

    Google Scholar 

  12. P Pavitha, J Prashanth, G Ramu, G Ramesh, K Mamatha and B Venkatram Reddy J. Mol. Struct.1147 406 (2017)

    ADS  Google Scholar 

  13. S S Ahmed, F A T. Nisreen, M R El-Ghobashy and M Tommasin Spectrochim. Acta A152 480 (2016)

    Google Scholar 

  14. C W Bauschlicher Jr Chem. Phys.448 43 (2015)

    Google Scholar 

  15. A S Patil, C Uthaisar, V Barone and B D Fahlman J. Mol. Struct.448 43 (2015)

    Google Scholar 

  16. K Chitoshi, F Jun, O Mikio and Y Akio Anal. Sci.9 1 (2003)

    Google Scholar 

  17. A D Becke J. Chem. Phys.98 5648 (1993)

    ADS  Google Scholar 

  18. C Lee, W T Yang and R G Parr Phys. Rev. B37 785 (1988)

    ADS  Google Scholar 

  19. M J Frisch, G W Trucks, H B Schlegel, G E Scuseria, M A Robb and J R Cheeseman et al. Gaussian 09, Revision C.01 (Wallingford: Gaussian, Inc.) (2009)

    Google Scholar 

  20. A Frisch, A B Nielsen and A J Holder Gaussview Users Manual (Pittsburg: Gaussian Inc.) (2001)

    Google Scholar 

  21. G A Petersson and M A Al-Laham J. Chem. Phys.94 6081 (1991)

    ADS  Google Scholar 

  22. G Litwinienko, G A DiLabio, P Mulder, H G Korth and K U Ingold J. Phys. Chem. A113 6275 (2009).

    Google Scholar 

  23. I Rozas, I Alkorta and J Elguero J. Phys. Chem. A102 9925 (1998)

    Google Scholar 

  24. G Fogarasi, X Zhou, P W Tayler and P Pulay J. Am. Chem. Soc.114 8191 (1992)

    Google Scholar 

  25. G Fogarasi, P Pulay, J R Durig Vibrational Spectra and Structure (New York: Elsevier), vol. 14 (1991)

    Google Scholar 

  26. T Sundius J. Mol. Struct.218 321 (1990)

    ADS  Google Scholar 

  27. T Sundius Vib. Spectrsc.29 89 (2002)

    Google Scholar 

  28. P Pulay, G Fogarasi, G Pongor, J E Boggs and A Vargha J. Am. Chem. Soc.105 7037 (1983)

    Google Scholar 

  29. A Berces and T Ziegler J. Chem. Phys.98 4793 (1993)

    ADS  Google Scholar 

  30. G Fogarasi, P Pulay and J R Durig (Eds.) Vibrational Spectra and Structure (Amsterdam: Elsevier), vol. 4 (1985)

    Google Scholar 

  31. J B Foresman and A Frisch Exploring Chemistry with Electronics Structure Methods, 2nd edn. (Pittsburg: Gaussian, Inc.) (1996)

    Google Scholar 

  32. V Krishnakumar and R John Xavier Spectrochim. Acta A61 1799 (2005)

    ADS  Google Scholar 

  33. S Y Lee and B H Boo Bull. Korean Chem. Soc.17 754 (1996)

    Google Scholar 

  34. K Shanshan, Z Hu, T Guodong, L Rongqing, Z Yu, Z Jianying and W Changmei Spectrochim. Acta A96 768 (2012)

    Google Scholar 

  35. S Leena, K Amarendra, N Vijay, K R Srivastava and P Onkar J. At. Mol. Sci.3 212 (2011)

    Google Scholar 

  36. T Joseph, H T Varghese, C Yohannan Panicker, T Thiemann, K Viswanathan, V A Christian and T K Manojkumar Spectrochim. Acta A117 413 (2014)

    ADS  Google Scholar 

  37. V Krishnakumar and V Balachandran Spectrochim. Acta A63 464 (2006)

    ADS  Google Scholar 

  38. P N Prasad and D J Williams Introduction to Nonlinear Optical Effects in Molecules and Polymers (New York: Wiley) (1991)

    Google Scholar 

  39. F Meyers, S R Marder, B M Pierce and J L Bredas J. Am. Ceram. Soc.116 10703 (1994)

    Google Scholar 

  40. F Hinchliffe and R W Munn Molecular Electromagnetism (Chichester: Wiley) (1985)

    Google Scholar 

  41. D A Klienman Phys. Rev.126 1977 (1962)

    ADS  Google Scholar 

  42. A Ahmad, D Mehrdadi and Z Abedien Spectrochim. Acta A196 353 (2018)

    ADS  Google Scholar 

  43. M Arivazhagan and S Jeyavijayan Spectrochim. Acta A79 376 (2011)

    ADS  Google Scholar 

  44. R J Parr, L V Szentpaly and S Liu J. Am. Chem. Soc.121 1922 (1999)

    Google Scholar 

  45. N Ozdemir, B Eren, M Dincer and V Bekdemir Mol. Phys.108 13 (2010)

    ADS  Google Scholar 

  46. T Yanai, D Tew and N Handy Chem. Phys. Lett.393 51 (2004)

    ADS  Google Scholar 

  47. J Wang, H Li, N N Ma, L K Yan and Z M Su Dyes Pigm.99 440 (2013)

    Google Scholar 

  48. M I Abdullah, M R S A Janjua, A Mahmood, S Ali and M Ali Bull. Korean Chem. Soc.34 2093 (2013)

    Google Scholar 

  49. P Pounraj, V Mohankumar, M S Pandian and P Ramasamy J. Mol. Graph. Model17 30649 (2017)

    Google Scholar 

  50. J Zhang, Y H Kan, H B Li, Y Geng, Y Wu and Z M Su Dyes Pigm.95 313 (2012)

    Google Scholar 

  51. P Politzer and D G Truhlar (Eds.) Chemical Applications of Atomic and Molecular Electrostatic Potentials (New York: Plenum Press) (1981)

    Google Scholar 

  52. E Scrocco Tomasi J. Adv. Quantum Chem.11 115 (1978)

    ADS  Google Scholar 

  53. P Politzer and K C Daiker Models for chemical reactivity. The Force Concept in Chemistry (eds.) B M Deb (Van Nostrand Reinhold: New York) p 294 (1981)

    Google Scholar 

  54. V Balachandran and V Karunakaran J. Mol. Struct.106 284 (2013)

    Google Scholar 

  55. E D Glendening, A E Reed, J E Carpenter and F Weinhold NBO Version 3.1, TCI (Madison: University of Wisconsin) (1998)

    Google Scholar 

  56. S Sebastian and N Sundaraganesan Spectrochim. Acta A75 941 (2010)

    ADS  Google Scholar 

  57. R G Parr and W Yang Functional Theory of Atoms and Molecules (New York: Oxford University Press) (1989)

    Google Scholar 

  58. P W Ayers and R G Parr J. Am. Chem. Soc.122 2010 (2000)

    Google Scholar 

Download references

Acknowledgement

The author KES thanks to DST, Govt. of India for providing fellowship. KR thanks to the MHRD Govt. of India for providing Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Prashanth.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eswar Srikanth, K., Ramaiah, K., Jagadeeswara Rao, D. et al. Experimental and theoretical analyses on structural (monomer and dimeric form), spectroscopic and electronic properties of an organic semiconductor 2,6-dimethoxyanthracene. Indian J Phys 94, 1153–1167 (2020). https://doi.org/10.1007/s12648-019-01562-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01562-z

Keywords

PACS Nos.

Navigation