Skip to main content
Log in

A fractional diffusion equation with sink term

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Approaching dynamical aspects in systems with localised sink term is fundamentally relevant from the physical-experimental point of view. However, theoretical advances have not progressed much in this direction; this is due to the great difficulty of addressing such types of problems from an analytic point of view. In this work, we investigate the systems sink points (like traps) considering a dynamics governed by the like reaction–diffusion equation in the presence of fractional derivatives. In order to do so, making use of the continuous-time random walks theory we constructed a model that contains multiples sink terms, on sequence we analysed the problem for two cases: first, considering only a single sink term and, second, considering multiples sink point associated with a fractal set. In both cases, we present the analytic solution in terms of Fox and Mittag–Leffler functions. Moreover, we perform a calculus of the mean square displacement and survival probability. The proposal and the techniques used in this work are useful to describe anomalous diffusive phenomena and the transport of particles in irregular media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K Falconer Fractal Geometry: Mathematical Foundations and Applications (New York: Wiley) (2004)

    MATH  Google Scholar 

  2. J Sabatier, O P Agrawal, and J T Machado Advances in Fractional Calculus, vol 4 (Berlin: Springer) (2007)

    MATH  Google Scholar 

  3. J A Kaandorp Fractal Modelling: Growth and Form in Biology (Berlin: Springer) (2012)

    Google Scholar 

  4. A Szabo, G Lamm and G H Weiss J. Stat. Phys. 34 1 (1984)

    MathSciNet  Google Scholar 

  5. V Kuzovkov and E Kotomin Rep. Prog. Phys. 51(12) 1479 (1988)

    ADS  Google Scholar 

  6. F Family and D P Landau Kinetics of Aggregation and Gelation (Amsterdam: Elsevier) (2012)

    Google Scholar 

  7. E G Flekkoy Phys. Rev. E 95 012139 (2017)

  8. A Einstein Ann. Phys. 322 549 (1905)

    ADS  Google Scholar 

  9. R Metzler and J Klafter Phys. Rep. 339 1 (2000)

    ADS  Google Scholar 

  10. S A McKinley and H D Nguyen SIAM J. Math. Anal. 50 5119 (2018)

    MathSciNet  Google Scholar 

  11. R Morgado, F A Oliveira, G G Batrouni and A Hansen Phys. Rev. Lett. 89 100601 (2002)

    ADS  Google Scholar 

  12. L C Lapas, R Morgado, M H Vainstein, J M Rubí and F A Oliveira Phys. Rev. Lett .101 230602 (2008)

    ADS  Google Scholar 

  13. M H Vainstein, I V L Costa, R Morgado and F A Oliveira Phys. Rev. Lett. 73 726732 (2006)

    Google Scholar 

  14. F A Oliveira, R M S Ferreira, L C Lapas and M H Vainstein Front. Phys. 7 18 (2019)

    ADS  Google Scholar 

  15. M A F dos Santos Fractal Fract. 2 20 (2018)

    Google Scholar 

  16. Z Tomovski, T Sandev, R Metzler, and J Dubbeldam Phys. A Stat. Mech. Appl. 391 2527 (2012)

    ADS  MathSciNet  Google Scholar 

  17. J Hristov Prog. Fract. Differ. Appl. 3 19 (2017)

    Google Scholar 

  18. D del Castillo-Negrete Phys. Plasmas 13 082308 (2006)

    ADS  MathSciNet  Google Scholar 

  19. R Metzler, J -H Jeon, A G Cherstvy and E Barkai Phys. Chem. Chem. Phys. 16 24128 (2014)

    Google Scholar 

  20. M A F dos Santos J. Stat. Mech. 2019(3) 033214 (2019). https://doi.org/10.1088/1742-5468/ab081b

    Article  Google Scholar 

  21. L F Richardson Proc. R. Soc. Lond. A 110 709 (1926)

    ADS  Google Scholar 

  22. H Scher and E W Montroll Phys. Rev. B 12 2455 (1975)

    ADS  Google Scholar 

  23. V E Tarasov Commun. Nonlinear Sci. Numer. Simul. 18 2945 (2013)

    ADS  MathSciNet  Google Scholar 

  24. E Nadal, J V Aguado, E Abisset-Chavanne, F Chinesta, R Keunings and E Cueto Appl. Math. Model. 51 58 (2017)

    MathSciNet  Google Scholar 

  25. M A F dos Santos and I S Gomez J. Stat. Mech. Theory Exp. 2018 123205 (2018)

    Google Scholar 

  26. A Bhrawy and M Zaky Appl. Numer. Math. 111 197 (2017)

    MathSciNet  Google Scholar 

  27. A Ortega, J Rosales, L Martínez and C Carreñoc Optik 161 244 (2018)

    ADS  Google Scholar 

  28. J Gómez-Aguilar Optik 168 728 (2018)

    ADS  Google Scholar 

  29. B B Mandelbrot The Fractal Geometry of Nature (New York: WH freeman) (1982)

  30. T S Vicsek Fractal Growth Phenomena (Singapore: World Scientific) (1992)

    MATH  Google Scholar 

  31. T Pajkossy and L Nyikos J. Electrochem. Soc. 133 2061 (1986)

    ADS  Google Scholar 

  32. V E Tarasov Chaos Interdiscip. J. Nonlinear Sci. 15 023102 (2005)

    MathSciNet  Google Scholar 

  33. A K Golmankhaneh, A Fernandez, A K Golmankhaneh and D Baleanu Entropy 20 504 (2018)

    ADS  Google Scholar 

  34. I Podlubny Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol 198 (Amsterdsam: Elsevier) (1998)

    MATH  Google Scholar 

  35. D Z Rudner, Q Pan, and R M Losick Proc. Natl. Acad. Sci. 99 8701 (2002)

    ADS  Google Scholar 

  36. U Habiba, A M Afifi, A Salleh and B C Ang J. Hazard. Mater. 322 182 (2017)

    Google Scholar 

  37. J M Dickhout, J Moreno, P Biesheuvel, L Boels, R G Lammertink and W M de Vos J. Colloid Interface Sci. 487 523 (2017)

    ADS  Google Scholar 

  38. P Tan, J Sun, Y Hu, Z Fang, Q Bi, Y Chen and J Cheng J. Hazard. Mater. 297 251 (2015)

    Google Scholar 

  39. Y Yurekli J. Hazard. Mater. 309 53 (2016)

    Google Scholar 

  40. P Tan, Y Liang, Q Xu, E Mamontov, J Li, X Xing and L Hong Phys. Rev. Lett. 120 248101 (2018)

    ADS  Google Scholar 

  41. L Wang, A Dumoulin, M Renner, A Triller and C G Specht PloS one 11 e0148310 (2016)

    Google Scholar 

  42. M Damak, S R Mahmoudi, M N Hyder and K K Kripa Nat. Commun. 7 12560 (2016)

    ADS  Google Scholar 

  43. H Röder, E Hahn, H Brune, J-P Bucher and K Kern Nature 366 6451 (1993)

  44. H Brune, C Romainczyk, H Röder and K Kern Nature 369 6480 (1994)

    Google Scholar 

  45. B Ross Hist. Math. 4 75 (1977)

    MathSciNet  Google Scholar 

  46. R Gorenflo and A Kilbas Mittag-Leffler Functions, Related Topics and Applications (Berlin: Springer) (2014)

    MATH  Google Scholar 

  47. J T Machado, V Kiryakova and F Mainardi Commun. Nonlinear Sci. Numer. Simul. 16 1140 (2011)

    ADS  MathSciNet  Google Scholar 

  48. N Sene and A N Fall Fractal Fract. 3 14 (2019)

    Google Scholar 

  49. M A Herzallah J. Fract. Calc. Appl. 5 1 (2014)

    MathSciNet  Google Scholar 

  50. J T Machado in Acoustics and Vibration of Mechanical Structures—AVMS-2017 (Berlin: Springer) p 3 (2018)

  51. N Laskin Phys. Rev. E 66 056108 (2002)

    ADS  MathSciNet  Google Scholar 

  52. B Henry, T Langlands and S Wearne Phys. Rev. E 74 031116 (2006)

    ADS  MathSciNet  Google Scholar 

  53. M A F dos Santos, M K Lenzi and E K Lenzi Chin. J. Phys. 55 1294 (2017)

    ADS  Google Scholar 

  54. M A F dos Santos, M K Lenzi and E K Lenzi Adv. Math. Phys. 2017 6361598 (2017)

    Google Scholar 

  55. S B Yuste, L Acedo and K Lindenberg Phys. Rev. E 69 036126 (2004)

    ADS  Google Scholar 

  56. T Sandev, R Metzler and A Chechkin Fract. Calc. Appl. Anal. 21 10 (2018)

    MathSciNet  Google Scholar 

  57. E K Lenzi, M A F dos Santos, D S Vieira, R S Zola and H V Ribeiro Phys. A Stat. Mech. Appl. 443 32 (2016)

    ADS  Google Scholar 

  58. S H Northrup and J T Hynes J. Chem. Phys. 73 2700 (1980)

    ADS  MathSciNet  Google Scholar 

  59. G Wilemski and M Fixman J. Chem. Phys. 58(9) 4009 (1973)

    ADS  Google Scholar 

  60. S H Northrup and J T Hynes J. Chem. Phys. 71 871 (1979)

    ADS  Google Scholar 

  61. D F Calef and J M Deutch Annu. Rev. Phys. Chem. 34(1) 493 (1983)

    ADS  Google Scholar 

  62. K Seki, K Murayama and M Tachiya Phys. Rev. B 71 235212 (2005)

    ADS  Google Scholar 

  63. K Seki, M Wojcik and M Tachiya J. Chem. Phys. 124 044702 (2006)

    ADS  Google Scholar 

  64. Y-S Ho and G McKay Process Saf. Environ. Prot. 76 183 (1998)

    Google Scholar 

  65. T S Chandra, S Mudliar, S Vidyashankar, S Mukherji, R Sarada, K Krishnamurthi and V Chauhan Bioresour. Technol. 184 395 (2015)

    Google Scholar 

  66. J Yan, Y Huang, Y -E Miao, W W Tjiu and T Liu J. Hazard. Mater. 283 730 (2015)

    Google Scholar 

  67. S Homaeigohar and M Elbahri NPG Asia Mater. 9(8) e427 (2017)

    Google Scholar 

  68. J Sung, E Barkai, R J Silbey and S Lee J. Chem. Phys. 116 2338 (2002)

    ADS  Google Scholar 

  69. T Sandev, A Iomin and H Kantz Phys. Rev. E 95 052107 (2017)

    ADS  Google Scholar 

  70. T Sandev, A Schulz, H Kantz and A Iomin Chaos Solitons Fractals 114 551 (2018)

    ADS  MathSciNet  Google Scholar 

  71. V E Tarasov Phys. Lett. A 336 167 (2005)

    ADS  Google Scholar 

  72. T Sandev, A Iomin and V Méndez J. Phys. A Math. Theor. 49 355001 (2016)

    MathSciNet  Google Scholar 

  73. T R Prabhakar Yokohama Math. J. 19 7 (1971)

    MathSciNet  Google Scholar 

  74. M A F dos Santos Physics2019 033214 (2019)

    Google Scholar 

  75. T Sandev Mathematics 5 66 (2017)

    Google Scholar 

  76. A Stanislavsky and A Weron J. Chem. Phys. 149 044107 (2018)

    ADS  Google Scholar 

  77. A M Mathai, R K Saxena and H J Haubold The H-function: Theory and Applications (Berlin: Springer) (2009)

    MATH  Google Scholar 

Download references

Acknowledgements

M. A. F. dos Santos acknowledges the support of the Brazilian agency CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. F. dos Santos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

The Fox H function (or \({\text{ H }}\)-function) may be defined in terms of the Mellin–Barnes-type integral [77]

$$\begin{aligned} \left. {{\hbox {H}}}_{p , q}^{m , n} \left[ x \left| _{(b_{q},B_{q})}^{(a_{p},A_{p})} \right] \right. \right.= & {} \left. {{\hbox {H}}}_{p,q}^{m , n} \left[ x \left| _{(b_{1},B_{1}), \ldots , (b_{q},B_{q})}^{(a_{1},A_{1}),\ldots ,(a_{p},A_{p})} \right] \right. \right. \nonumber \\= & {} \frac{1}{2\pi i}\int _{L}\chi (\xi )x^{-\xi }\mathrm{d}\xi \end{aligned}$$
(52)

with

$$\begin{aligned} \chi (\xi )= & {} \frac{\Pi _{j=1}^{m}\Gamma \left( b_{j}-B_{j}\xi \right) \Pi _{j=1}^{n}\Gamma \left( 1-a_{j}+A_{j}\xi \right) }{\Pi _{j=m+1}^{q}\Gamma \left( 1-b_{j}+B_{j}\xi \right) \Pi _{j=n+1}^{p}\Gamma \left( a_{j}-A_{j}\xi \right) } \end{aligned}$$
(53)

where mnp and q are integers satisfying \(0\le n\le p\) and \(1\le m\le q\). It may also be defined by its Mellin transform

$$\begin{aligned} \int _{0}^{\infty }\left. {{\hbox {H}}}_{p , q}^{m , n} \left[ ax \left| _{(b_{q},B_{q})}^{(a_{p},A_{p})} \right] \right. \right. x^{\xi -1}\mathrm{d}x=a^{-\xi }\chi (\xi )\;. \end{aligned}$$
(54)

Here, the parameters have to be defined such that \(A_{j}>0\) and \(B_{j}>0\) and \(a_j(b_{h}+\nu )\ne B_{h}(a_{j}-\lambda -1)\) where \(\nu ,\lambda =0,1,2, \ldots ,\)\(h=1,2, \ldots ,m\) and \(j=1,2, \ldots ,m\). The contour L separates the poles of \(\Gamma \left( b_{j}-B_{j}\xi \right)\) for \(j=1,2, \ldots ,m\) from those of \(\Gamma \left( 1-a_{j}+A_{j}\xi \right)\) for \(j=1,2, \ldots ,n\). The \({\text{ H }}\)-function is analytic in x if either (i) \(x\ne 0\) and \(M>0\) or (ii) \(0<|x|<1/B\) and \(M=0\), where \(M=\sum _{j=1}^{q}B_{j}-\sum _{j=1}^{p}A_{j}\) and \(B=\prod _{j=1}^{p}A_{j}^{A_{j}}\prod _{j=1}^{q}B_{j}^{-B_{j}}\).

Some useful properties of the Fox H-function found in Refs. [77] are listed below.

(i) The H-function is symmetric in the pairs \((a_{1},A_{1}),\ldots , (a_{p},A_{p})\), likewise \((a_{n+1},A_{n+1}),\ldots ,(a_{p}, A_{p})\); in \((b_{1}, B_{1}), \ldots , (b_{q}, B_{q})\) and in \((b_{n+1}, B_{n+1}), \ldots , (b_{q}, B_{q})\).

(ii) For \(k>0\)

$$\begin{aligned} \left. {{\hbox {H}}}_{p, q}^{m , n} \left[ x \left| _{(b_{q},B_{q})}^{(a_{p},A_{p})} \right] \right. \right. = k\left. {{\hbox {H}}}_{p \; q}^{m \; n} \left[ x^{k} \left| _{(b_{q},kB_{q})}^{(a_{p},kA_{p})} \right] \right. \right. \end{aligned}$$
(55)

(iii) The multiplication rule is

$$\begin{aligned} x^{k}\left. {{\hbox {H}}}_{p,; q}^{m , n} \left[ x \left| _{(b_{q},B_{q})}^{(a_{p},A_{p})} \right] \right. \right. = \left. {{\hbox {H}}}_{p ,q}^{m , n} \left[ x \left| _{(b_{q}+kB_{q},B_{q})}^{(a_{p}+kA_{p},A_{p})} \right] \right. \right. \end{aligned}$$
(56)

(iv) For \(n\ge 1\) and \(q>m\),

$$\begin{aligned}&\left. {{\hbox {H}}}_{p , q}^{m , n} \left[ x \left| _{(b_{1},B_{1})\cdots (b_{q-1},B_{q-1})(a_{1},A_{1})}^{(a_{1},A_{1})(a_{2},A_{2})\cdots (a_{p},A_{p})} \right] \right. \right. \nonumber \\&\quad =\left. {{\hbox {H}}}_{p-1 ,q-1}^{m , n-1} \left[ x \left| _{(b_{1},B_{1})\cdots (b_{q-1},B_{q-1})}^{(a_{2},A_{2})\cdots (a_{p},A_{p})}\right] \right. \right. \end{aligned}$$
(57)

(v) For \(m\ge 2\) and \(p>n\)

$$\begin{aligned}&\left. {{\hbox {H}}}_{p , q}^{m , n} \left[ x \left| _{(b_{1},B_{1})(b_{2},B_{2})\cdots (b_{q},B_{q})}^{(a_{1},A_{1})\cdots (a_{p-1},A_{p-1})(b_{1},B_{1})} \right] \right. \right. \nonumber \\&\quad =\left. {{\hbox {H}}}_{p-1 ,q-1}^{m-1, n} \left[ x \left| _{(b_{2},B_{2})\cdots (b_{q},B_{q})}^{(a_{2},A_{2})\cdots (a_{p-1},A_{p-1})}\right] \right. \right. \end{aligned}$$
(58)

(vi) The relation between the generalised Mittag–Leffler function and the Fox H function is given by

$$\begin{aligned} E_{\alpha ,\beta }(x)=\left. {{\hbox {H}}}_{1 , 2}^{1 , 1} \left[ -x \left| _{(0,1)(1-\beta ,\alpha )}^{(0,1)} \right] \right. \right. \end{aligned}$$
(59)

(vii) Under Fourier cosine transformation, the H function transforms as

$$\begin{aligned}&\int _{0}^{\infty }\left. {{\hbox {H}}}_{p , q}^{m , n} \left[ k \left| _{(b_{q},B_{q})}^{(a_{p},A_{p})} \right] \right. \right. \cos (kx) \mathrm{d}x\nonumber \\&\quad =\frac{\pi }{x}\left. {{\hbox {H}}}_{q+1, p+2}^{n+1, m} \left[ x \left| _{(1,1),(1-a_{p},A_{p}),\left( 1,1/2\right) }^{(1-b_{q},B_{q}),\left( 1,1/2\right) } \right] \right. \right. \end{aligned}$$
(60)

(viii) If the poles of \(\prod _{j=1}^{m}\Gamma \left( b_{j}-B_{j}\xi \right)\) are simple, the following series expansion is valid:

$$\begin{aligned}&\left. {{\hbox {H}}}_{p,q}^{m,n} \left[ x \left| _{(b_{q},B_{q})}^{(a_{p},A_{p})} \right] \right. \right. \nonumber \\&\quad = \sum _{h=1}^{m} \sum _{\nu =0}^{\infty }\frac{(-1)^{\nu }x^{(b_h+\nu )/B_{h}}}{\nu !B_h}\frac{\Pi _{j=1,j\ne h}^{m }\Gamma \left( b_{j}-\frac{B_{j}}{B_{h}}(b_{h}+\nu )\right) }{\Pi _{j=m+1}^{q}\Gamma \left( 1-b_{j}+\frac{B_{j}}{B_{h}}(b_{h}+\nu )\right) } \nonumber \\&\qquad \times \frac{\Pi _{j=1}^{n}\Gamma \left( 1-a_{j}+\frac{A_{j}}{B_{h}}(b_{h}+\nu )\right) }{\Pi _{j=n+1}^{p} \Gamma \left( a_{j}-\frac{A_{j}}{B_{h}}(b_{h}+\nu )\right) } \;. \end{aligned}$$
(61)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, M.A.F. A fractional diffusion equation with sink term. Indian J Phys 94, 1123–1133 (2020). https://doi.org/10.1007/s12648-019-01543-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01543-2

Keywords

PACS Nos.

Navigation