Skip to main content

Advertisement

Log in

Slip role for unsteady MHD mixed convection of nanofluid over stretching sheet with thermal radiation and electric field

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

This paper mainly focuses on the impacts of slip conditions on the two-dimensional unsteady mixed convection flow of electrical magnetohydrodynamic nanofluid over a stretching sheet in the presence of thermal radiation, viscous dissipation, and chemical reaction. The synchronized impacts of electric and magnetic fields on the momentum and energy fields using Buongiorno nanofluid model were introduced to enhance thermal conductivity and hence create more pathways to heat transfer performance of nanofluid. The highly nonlinear couple systems of partial differential equations were modeled as a set of nonlinear ordinary differential equations by using suitably defined transformations which are then solved by implicit finite difference scheme known as Keller box method. It was established that velocity has a direct opposite relationship with electric and magnetic fields. The velocity, temperature, and concentration profiles caused intense decay to velocity slip, thermal slip, and solutal slip, with permeability condition. Magnetic field enhances the nanofluid temperature intensely with impermeable medium resulting in a decrease in heat transfer rate from the surface. The heat convection current is strengthened by viscous dissipation and radiative heat transfer prevailing impermeability, which leads to a reduction in heat transfer rate. Comparisons with previously published works seen in the literature were made, and the result was found to be in excellent agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

a :

Constant

\(b\) :

Stretching sheet constant

\(B_{0}\) :

Magnetic field factor

\(c_{\text{f}}\) :

Skin friction coefficient

\(D_{\text{B}}\) :

Brownian diffusion coefficient

\(D_{\text{T}}\) :

Thermophoresis diffusion coefficient

\(E_{0}\) :

Electric field factor

\(Ec\) :

Eckert number

\(f^{\prime }\) :

Dimensionless velocity

\(J\) :

Joule current

\(k\) :

Thermal conductivity

\(M\) :

Magnetic field parameter

\(Rd\) :

Radiation parameter

\(Nb\) :

Brownian motion parameter

\(Nt\) :

Thermophoresis parameter

\(Nu\) :

Local Nusselt number

\(p\) :

Fluid pressure

\(Pr\) :

Prandtl number

\(q_{\text{r}}\) :

Radiative heat flux

\(Re\) :

Local Reynolds number

s :

Suction/injection

\(Sc\) :

Schmidt number

\(Sh\) :

Local Sherwood number

\(T\) :

Temperature of the fluid

\(T_{\text{w}}\) :

Constant temperature at the wall

\(T_{\infty }\) :

Ambient temperature

\(u,v\) :

Velocity component along x- and y-direction

\(v_{\text{w}}\) :

Wall mass transfer

\(V\) :

Fluid velocity

\(\alpha\) :

Thermal diffusivity

\(\sigma\) :

Electrical conductivity

\(\sigma *\) :

Stefan–Boltzmann constant

\(\eta\) :

Dimensionless similarity variable

\(\mu\) :

Dynamic viscosity of the fluid

\(\upsilon\) :

Kinematic viscosity of the fluid

\(\left( \rho \right)_{\text{f}}\) :

Density of the fluid

\(\left( {\rho c} \right)_{\text{f}}\) :

Heat capacity of the fluid

\(\left( {\rho c} \right)_{\text{p}}\) :

Effective heat capacity of a nanoparticle

\(\psi\) :

Stream function

\(\sigma\) :

Electrical conductivity

\(\varphi_{\text{w}}\) :

Nanoparticle volume fraction at the surface

\(\varphi_{\infty }\) :

Nanoparticle volume fraction at large values of \(y\)

\(\theta\) :

Dimensionless temperature

\(\phi\) :

Dimensionless concentration

\(\tau\) :

Ratio between the effective heat transfer capacity and the heat capacity of the fluid

\(\lambda\) :

Mixed convection parameter

\(\gamma\) :

Chemical reaction

\(\infty\) :

Condition at the free stream

\({\text{w}}\) :

Condition at the surface

References

  1. T Hayat, M Imtiaz, and A Alsaedi Int. J. Heat Mass Transf.92 100 (2016)

    Google Scholar 

  2. Y S Daniel, Z A Aziz, Z Ismail, and F Salah Theor. Appl. Mech. Lett.7 235 (2017)

    Google Scholar 

  3. E Abu-Nada and A J Chamkha Eur. J. Mech B Fluids,29 472 (2010)

    ADS  Google Scholar 

  4. M I Khan, T Hayat, M I Khan, and A Alsaedi Int. Commun. Heat Mass Transf.91 216 (2018)

    Google Scholar 

  5. M I Khan, S Ullah, T Hayat, M I Khan, and A Alsaedi J. Mol. Liq.260 279 (2018)

    Google Scholar 

  6. M I Khan, S Qayyum, T Hayat, M I Khan, A Alsaedi, and T A Khan Phys. Lett. A382 2017 (2018)

    ADS  MathSciNet  Google Scholar 

  7. Y S Daniel and S K Daniel Alex. Eng. J.54 705 (2015)

    Google Scholar 

  8. T Hayat, M I Khan, M Farooq, T Yasmeen, and A Alsaedi J. Mol. Liq.220 49 (2016)

    Google Scholar 

  9. T Hayat, M I Khan, M Farooq, A Alsaedi, M Waqas, and T Yasmeen Int. J. Heat Mass Transf.99 702 (2016)

    Google Scholar 

  10. N B Khan, Z Ibrahim, M I Khan, T Hayat, and M F Javed Int. J. Heat Mass Transf.121 309 (2018)

    Google Scholar 

  11. M Sheikholeslami, M Jafaryar, and Z Li J. Mol. Liq.263 489 (2018)

    Google Scholar 

  12. M Sheikholeslami J. Mol. Liq.265 347 (2018)

    Google Scholar 

  13. M Sheikholeslami J. Mol. Liq.263 303 (2018)

    Google Scholar 

  14. M Sheikholeslami, M Darzi, and Z Li Int. J. Heat Mass Transf.125 1087 (2018)

    Google Scholar 

  15. M Sheikholeslami, S Shehzad, F Abbasi, and Z Li Comput. Methods Appl. Mech. Eng.338 491 (2018)

    ADS  Google Scholar 

  16. M Sheikholeslami and H B Rokni Phys. Fluids30 012003 (2018)

    ADS  Google Scholar 

  17. M W A Khan, M I Khan, T Hayat, and A Alsaedi Phys. B Condens. Matter534 113 (2018)

    ADS  Google Scholar 

  18. M Sheikholeslami, M Darzi, and M Sadoughi Int. J. Heat Mass Transf.122 643 (2018)

    Google Scholar 

  19. M Sheikholeslami, M Jafaryar, S Saleem, Z Li, A Shafee, and Y Jiang Int. J. Heat Mass Transf.126 156 (2018)

    Google Scholar 

  20. T Hayat, M I Khan, S Qayyum, A Alsaedi, and M I Khan Phys. Lett. A382 749 (2018)

    ADS  MathSciNet  Google Scholar 

  21. T Hayat, M Khan, M I Khan, A Alsaedi, and M Ayub PloS ONE12 e0180976 (2017)

    Google Scholar 

  22. M Sheikholeslami, Z Li, and A Shafee Int. J. Heat Mass Transf.127 665 (2018)

    Google Scholar 

  23. M Sheikholeslami J. Mol Liq.266 495 (2018)

    Google Scholar 

  24. Y S Daniel, Z A Aziz, Z Ismail, and F Salah Aust. J. Mech. Eng.16 213 (2018)

    Google Scholar 

  25. M Sheikholeslami, S Shehzad, Z Li, and A Shafee Int. J. Heat Mass Transf.127 614 (2018)

    Google Scholar 

  26. M Waqas, M Farooq, M I Khan, A Alsaedi, T Hayat, and T Yasmeen Int. J. Heat Mass Transf.102 766 (2016)

    Google Scholar 

  27. M I Khan, M Waqas, T Hayat, and A Alsaedi J. Colloids Interface Sci.498 85 (2017)

    ADS  Google Scholar 

  28. T Hayat, M I Khan, S Qayyum, and A Alsaedi Colloids. Surf. A Physicochem. Eng. Aspects539 335 (2018)

    Google Scholar 

  29. T Hayat, M I Khan, S Qayyum, and A Alsaedi Chin. J. Phys.55 2501 (2017)

    Google Scholar 

  30. M I Khan, M Waqas, T Hayat, M I Khan, and A Alsaedi J. Mol. Liq.246 259 (2017)

    Google Scholar 

  31. M Sheikholeslami and H B Rokni J. Mol. Liq.254 446 (2018)

    Google Scholar 

  32. M Sheikholeslami, S Shehzad, and Z Li Int. J. Heat Mass Transf.125 375 (2018)

    Google Scholar 

  33. M Sheikholeslami J. Mol. Liq.263 472 (2018)

    Google Scholar 

  34. Y S Daniel, Z A Aziz, Z Ismail, and F Salah Alex. Eng. J.57(3) 2187 (2018)

    Google Scholar 

  35. T Hayat, S Qayyum, M I Khan, and A Alsaedi Phys. Fluids30 017101 (2018)

    ADS  Google Scholar 

  36. S Yu and T A Ameel Int. J. Heat Mass Transf.44 4225 (2001)

    Google Scholar 

  37. W Ibrahim and B Shankar Comput. Fluids75 1 (2013)

    MathSciNet  Google Scholar 

  38. Y S Daniel J. Inst. Eng. (India) Ser. E97 115 (2016)

    Google Scholar 

  39. M M Mohseni, G Tissot, and M Badawi Int. J. Heat Fluid Flow71 442 (2018)

    Google Scholar 

  40. J Buongiorno, J. Heat Transf.128 240 (2006)

    Google Scholar 

  41. F Mabood, W Khan, and A M Ismail, J. Magn. Magn. Mater.374 569 (2015)

    ADS  Google Scholar 

  42. T Cebeci, and P Bradshaw, Physical and computational aspects of convective heat transfer. Springer Science & Business Media (1988)

  43. Y S Daniel, Z A Aziz, Z Ismail, and F Salah J. King Saud Univ. Sci. (2017). https://doi.org/10.1016/j.jksus.2017.10.002

    Article  Google Scholar 

  44. Y S Daniel, Z A Aziz, Z Ismail, and F Salah Eng. Lett.26 107 (2018)

    Google Scholar 

  45. A Noghrehabadi, E Izadpanahi, and M Ghalambaz Comput. Fluids100 227 (2014)

    MathSciNet  Google Scholar 

  46. A Noghrehabadi, R Pourrajab, and M Ghalambaz Int. J. Therm. Sci.54 253 (2012)

    Google Scholar 

  47. Y S Daniel, Z A Aziz, Z Ismail, and F Salah Chin. J. Phys.55 1821 (2017)

    Google Scholar 

  48. Y S Daniel, Z A Aziz, Z Ismail, and F Salah Int. J. Mult. Comput. Eng.15 545 (2017)

    Google Scholar 

  49. Y S Daniel, Z A Aziz, Z Ismail, and F Salah Chin. J. Phys.55 630 (2017)

    Google Scholar 

  50. M Khan and M Azam J. Mol. Liq.225 554 (2017)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Ministry of Higher Education and Research Management Centre, UTM, for the financial support through HIR grant vote No. Q.J130000.2409.04G43, COE grant vote No. Q.J130000.2409.03G96, and vote No. 19H00 for this research. Also, Y.S. Daniel thankfully acknowledges financial support from TETFUND through Kaduna State University, Nigeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zainal Abdul Aziz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daniel, Y.S., Aziz, Z.A., Ismail, Z. et al. Slip role for unsteady MHD mixed convection of nanofluid over stretching sheet with thermal radiation and electric field. Indian J Phys 94, 195–207 (2020). https://doi.org/10.1007/s12648-019-01474-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01474-y

Keywords

PACS Nos.

Navigation